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Preface

This book is a discrete math introduction targeted at undergraduates in mathematics,
computer science, and other science or engineering fields.

Typically, these students are exposed to this material early in their undergraduate
career, after calculus, and before diving into more abstract mathematics or com-
puter science courses. At this point, students face two difficulties, the gap between
mathematics and coding, and the gap between technique and perspective.

One of the lessons of this text is that approaching both coding and mathematics
with thoughtfulness and logic can open up new vistas and modes of thinking, a key
goal of any transitions course.

To bridge the gap between the two cultures, we include coding as an integral part
of the text. Python is a natural choice, given its mathematical nature and smooth
syntax. This inclusion is made, on the one hand, to address the needs of students in
data science who may need a review of discrete math in a succinct manner, and, on
the other hand, for students who are new to coding.

Whether for machine learning, cryptography, error-correcting codes, or big data,
scientists at all levels often need to learn abstract algebra or number theory. These
subjects may seem bewildering to the uninitiated. For this audience, this text may
serve as a useful introduction.

Six discrete math core areas are functions and sets, logic, proofs, counting, graphs,
and probability. We leave out graphs and probability, and we present the other topics
in vivo, rather than in vitro, by choosing arithmetic, both standard and modular, as
our main vehicle.

Students may not appreciate the need for, or the power of, pure thought, unless
they are presented with striking concrete results. We do not discuss proof techniques
explicitly; instead proofs and derivations are carefully constructed, starting from first
principles, as needed.

High points we touch on are square roots in modular arithmetic, and square roots
in continued fractions. Since this is a discrete math text, we handle square roots
algebraically, and avoid real numbers. We also include RSA encryption, given its
pervasive presence in our lives. To the extent possible, corresponding Python coding
is included either in the text or in the exercises.
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viii Preface

Instructors can choose to emphasize mathematics more, or coding more. Some
of the exercises may be fleshed out into end-of-semester projects. The uniqueness
of Z, Z,,, and Q, and the details of Q(\/B) are the most technical topics; these are
presented in Appendix A. We do this so the reader is not distracted as they study the
main text.

I thank my friends and colleagues Eric Grinberg, Fayez Al Hammadi, Salam
Al-Rawi, Munther Hindi, and Kei Lutalo for their help and support, and Yevgeniya
Rivers for getting me to start this project. Finally, I am most grateful to Rawa for
their hospitality and generosity during my stay there while writing this book.

New Haven, Spring 2020 Omar Hijab
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A Note to the Reader

This book is meant to be read side-by-side with a laptop running Python. It is
essential to check everything by running it in your Python interpreter. Everything
can be checked. This is a feature, not a bug.

In this book, math concepts are introduced and discussed in parallel with analo-
gous Python concepts. To help keep things straight, Python concepts and code are
in typewriter font, often to emphasize syntax. Code snippets
include shell prompts >>>, to differentiate user input from Python output. Shell
prompts are sometimes written 2>> to indicate the indentation level.

It’s a two-way street. Understanding coding will help you understand the math,
and understanding the math will help you understand coding.

That’s just the way math and coding work. On the plus side, if you put in the
work, you will see and understand aspects of the world you never even knew existed.
When you master coding, you will be able to understand aspects of coding you never
even knew existed.

All code in the text is executed with Python3. The web is your friend. You can
find more than you want to know about any aspect of Python with even rudimentary
searches. For beginners, the book [3] is the best I've seen. The official source for
Python documentation is here!. However, you may find other sites easier to digest,
at least on a first pass.

If you wish to learn more about discrete math, the bibliography at the end is a
good start. Among the books in the bibliography, [6] is an excellent beginning.

The book is divided into chapters, each of which is divided into sections. The
third section in the fourth chapter is referenced as §4.3. The second equation in the
third section of the fourth chapter is referenced as (4.3.2). The second theorem in
the third section of the fourth chapter is referenced as Theorem 4.3.2. The second
exercise in the fourth chapter is referenced as Exercise 4.2.

In the text, denotes the end of a proof, = means implies, and <= means if
and only if.

Lhttps://docs.python.org/
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Chapter 1
Objects

1.1 Types

The four built-in primitive types in Python are int, float, bool, and str,

>>>  type(23)

int

>>>  type(23.4)
float

>>> type(True)
bool

>>> type(’alpha’)
str

>>>  type(’23’)
str

int, float, bool, and str are types!

>>>  type(int)
type

An int is an integer, positive, negative, or zero. A float is Python’s approxi-
mation of a real number, consisting of an integer part and a fractional part. A str, a
string, and consists of a sequence of characters. A bool is a boolean, and takes on
the values True or False.

Since

>>>  int(23.4)

23

>>> 23.4 - int(23.4)
0.3999999999999986

! Depending on your Python environment, type(23) may return <class ’int’> instead.
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the fractional part is not exactly .4; this is because a Python float is only an
approximate representation of a real number. Equality is == and the negation of
equality is !=, so

>>> 23 == 15

False

>>> 23 1= 15

True

One can also input

>>> a = 23

>>> b =15
>>> a ==
False

>> a l=b
True

Here 23 and 15 are assigned to the variables a and b. In Python, equality is == and
assignment is =.2

Variables names may be as long as you like, and be made up of numbers, letters,
and the underscore _, but they can’t start with a number,

>>> 2abc = 23

Error: invalid syntax

>>> number_of_apples = 2

>>> number_of_oranges = 17

>>> number_of_apples + number_of_oranges
19

The strings "int’, *float’, ’bool’,and ’str’ are keywords. There are around
35 keywords in Python. You may get a complete list by running

>>> import keywords
>>> keyword.kwlist

Data in Python is stored as objects. Every object has an identity,® a type and a
value. An objects type determines the operations that the object supports. Python
is a strongly typed language: An objects identity and type never change once the
object has been created.

>>>  1d(23)
4387796800

>>> id(’alpha’)
4391932528

The values of some objects can change. Objects whose values can change are said
to be mutable. Objects whose values are unchangeable are called immutable.

2 In math, the same symbol = is used for both assignment and equality.
3 Think of an object’s identity as its location in memory.
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Objects of type int, float, bool, and str are immutable. Later we meet
objects of type 1list, set, and dict, which are mutable. Let’s attempt to cap-
italize the first letter of beta’,

>>> a = ’beta’
>>>  al0]
!b1

>>> a[0] = ’B’
Error: ’str’ object does not support item assignment

Instead, we take the slice a[1:] of a, and prepend to it the string "A’,

>>>  all:]
’1pha’

>>> A’ + a[l:]
’Alpha’

We explain slices in §1.3.

Objects are assigned to variables. Python is a dynamically typed language: Vari-
ables do not have ids, nor do variables have types; only the corresponding objects
have ids and types. Thus id(a) and type(a) return the id and type of the object
assigned to the variable a.

>>> a = 23

>>>  id(23) == id(a)
True

>>>  type(23) == type(a)
True

and

>>> a = 27

>>> id(a)
4392818624

>>>  type(a)

int

>>> a = ’alpha’
>>>  id(a)
4391932528

>>>  type(a)

str

Here we have the variable a pointing first to the object 23, then to the object 27,
then to the object "alpha’.

If a variable has no object assigned to it, it makes no sense to ask for its type
and id,

>>> type(new_variable)

Error: name ’'new_variable’ is not defined
>>> id(new_variable)

Error: name ’'new_variable’ is not defined
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Here not defined means no object is assigned to it.

An object exists only at runtime, that is only when the code is executing in
the Python interpreter. Turn the computer off, and the object doesn’t exist. Thus,
strictly speaking, an integer and an int are not the same: an int is an object,
existing at runtime, while an integer is a number, existing within mathematics.

If your code contains the statement

>>> a = 23

and you turn the computer off, you still have the number 23, since numbers exist

independently of computers, independently of us, and independently of the physical

universe.* You also have a variable a, because that’s just a string in your code (stored,

say, on non-volatile memory). But when the code is running, you have the object

23, living inside the computer’s volatile memory, and assigned to the variable a. An

object is similar to a thought, which has no existence unless you are thinking it.
A string is delimited by single quotes ’ or double quotes ",

>>> type(’alpha’)

str

>>> type("alpha')

str

>>> ’alpha’ == "alpha"

True

The string with no characters is the empty string ’’ or "". Multi-line strings are

delimited with triple quotes,

>>> a = """123
456"’
>>>  a
’123\n456’
Here \n is the newline character, and the three dots ... indicate the input is a

continuation of the input on the previous line, so

>>> len(a)
7

where len(a) is the length of the string a. Note \n is a single character, not two,
corresponding to byte Oa (Figure 1.3). Continuing,

>>> b = """123
456"""

>>> b

7123\n456’

>>> a==>b

True

>> ¢ ="""

4 You can’t even say the number 23 exists for all time, because numbers are independent of time
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123
456
>>> C
’\n123\n456\n’
>> a==corb==c
False
>>> len(c)

9

so a consists of seven characters and two lines, and ¢ consists of nine characters and
four lines, two of which are empty lines.

The print(a) statement is used to present the object a in a more user-friendly
fashion,

>>>  a
’123\n456’
>>> print(a)
123

456

bools may be compared

>>> True == False

False

>>> True == True and False == False
True

The logical expression a and b or c¢ and d is ambiguous. Which to do first,
and or or? This is solved by inserting parentheses.> For example, the logical expres-
sions

e (a and b) or (c and d)
e aand (b or c¢) and d

are unambiguous, and they have different truth values

>>> a = True
>>> b = False
>>> ¢ = True
>>> d = False

>>> (a and b) or (c and d) == a and (b or ¢) and d
False

See Exercise 1.13.
Some strs, not all strs, may be converted to ints or floats or bools,

5 Actually, when there are no parentheses, Python always evaluates and before or, but you often
want a different order.
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>>>  int(’237)

23

>>> int(’alpha’)
Error: invalid literal for int( ) with base 10: ’'alpha’
>>> float(’23’)
23.0

>>> bool(’237)
True

>>> bool(’alpha’)
True

>>> bool(’’)
False

Conversely, ints or floats or bools may be converted to strs,

>>>  str(23)

1937
>>> str(23.4)
’23.4°

>>> str(True)
"True’

>>> str(’alpha’)
"alpha’

We caution the reader that the above use of the term converted is, strictly speaking,
not correct: ints, floats, bools, and strs are immutable, they can’t be converted.
For example, the string ’ 23’

>>>  id(’237)

4422129648

is not converted: A new object, int(’23"), is created,

>>>  id(int(’237))
4379756352

>>>  int(’23’) == 23
True

and the old object, *23’, is left alone. Nevertheless, it is convenient to continue to
say converted, as long as we interpret the term correctly.

To clarify things, let us define a function to be a rule, a procedure, a process, a
factory, a black box, anything that returns an object, when fed some other object
(Figure 1.1). Our definition here is that of a Python function. The mathematical
concept of function is defined in §3.5.

Now let’s go back to ints. These are objects. How are they created? There has
to be a function in the Python code designed to return these ints. This function is a
sort of “int factory”. This factory creates only objects of type int, not objects
of type str, or any other type.
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argument return

Fig. 1.1 A function.

What is the name of this factory? It is int. Thus type(23) is int, because that
is the name of the function that creates the object 23. Similarly type(’alpha’)
is str, because that is the name of the function that creates the object ’alpha’.®
The same remarks hold for float, bool, and all other types.

When fed the string ’23’, the function int is designed to return the object 23,
so the object 23 has type int. When fed the empty string, the function int is
designed to return the object O (int() == 0 is True), so the object 0 has type
int.

When fed the string *alpha’, the function int doesn’t know what to do, because
int is not designed to handle such strings, so an error is raised. The conclusion is
that a type is an “object factory,” and

>>> type(int)
type

is just saying int is an object factory. Object factories are objects, everything is
an object,

>>>  id(int)
4378625280

A last remark about comparison of objects. Two objects a and b are compared
with the keyword is. If

>>> a is b
True

then the objects (corresponding to the variables) a and b are the same, This is
different than a == b, which compares the values of a and b, not the full objects
(see Exercise 1.7 and Exercise 2.14).

1.2 Octal, Binary, and Hexadecimal

Decimal notation is a representation of numbers; as such, decimal notation is a string.
Explicitly

6 This is not as abstract as it sounds. If you’re holding a soda can in your hand, and someone asks
“what type of soda is that?”, you would say “Pepsi”, since that is the name of the factory the soda
can came from.
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>>> a = '23’

>>>  type(a)

str

>>>  type(int(a))
int

>>>int(a)

23

When you input 23, you are typing the character ’2’ followed by the character ’3’.
In other words, you are entering the string ’23’. However Python automatically
interprets it as an int,

>>> 23 == int(’23’)

True

When we see the string *23’, we do not see the number 2 followed by the number
3; we see the single number 23, which is 2 - 10 + 3, where + is addition, and - is

multiplication.” When we see the string 423’ , we do not see the number 4 followed
by the number 2 followed by the number 3; we see the single number

4-10°+2-10+3=4-100+2-10 + 3 = 423.

More generally, in octal or in base 8, the string 23’ corresponds to the number
2 - 8 + 3 which equals the number 19. In octal, the string 423’ corresponds to

4.-8242-8+43=4-64+2-8+3=275.
To indicate this, we also may prefix the string *23’ witha ’00’, a zero followed by
lowercase "0’

>>> int(’23’,8)

19

>>> 0023 == 19 == int(’23’,8) == int(’0023’,8)
True

The closely related function oct ( ) takes an int and returns the octal string repre-
sentation,

>>>  oct(19)

"0023’

>>> 19 == int(oct(19),8) == 0023
True

>>> int(’23’,8) == oct(19)

False

Thus the function oct( ) is the inverse of the function int( ,8): whatever the
int a, we have

om e Yo

7 In Python, multiplication is a*b and powers are a**5 = a*a*a*a*a. In math, multiplication is
ab or a - b, and powers are a° = aaaaa =a -a-a-a - a.
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>>> int(oct(a),8) == a
True

Moreover, in octal representations, the digits are 0, 1, 2, 3, 4, 5, 6, 7 only. There are
no digits 8 or 9,

>>> int(’9’,8)
Error: invalid literal for int( ) with base 8: ’9’

but the numbers 8 and 9 still makes sense,

>>> int(’11’,8)

9

>>> int(’0o0ll1’,8)
9

>>>  oct(9)

0011’

In binary or base 2, the string 111’ corresponds to the number 7,
1:2241-2+1=1-4+1-2+1=7.
To indicate this, we also may prefix the string 111’ with a "0b’, a zero followed

by lowercase 'b’,

>>> int(’1117,2)

7

>>> 0blll == 7 == int(’111’,2) == int(’0bl111’,2)
True

The closely related function bin( ) takes an int and returns the binary string
representation,

>>>  bin(7)

"Ob111’

>>> 7 == int(bin(7),2) == 0blll
True

>>> int(’1117,2) == bin(7)
False

The function bin( ) is the inverse of the function int ( ,2): whatever the int a,
we have

>>> int(bin(a),2) == a
True

Moreover, in binary representations, the digits are O and 1 only. There are no other
digits,

>>> int(’57,2)

Error: invalid literal for int( ) with base 2: ’5’

but the number 5 still makes sense,
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>>>  int(’101°,2)

5

>>> int(’0b1017°,2)
5

>>>  bin(5)
"0b101’

In hexadecimal (hex for short) or base 16, the string *111" corresponds to the
number 273,

1-162+1-16+1=1-256+1-16+1=273.

To indicate this, we also may prefix the string 111’ with a *0x’, a zero followed
by lowercase 'x’,

>>> int(’111°,16)

273

>>>  0x111 == 273 == int(’111’,16) == int(’0x111’,16)
True

The closely related function hex ( ) takes an int and returns the hex or hexadecimal
string representation,

>>> hex(273)

"0x111°

>>> 273 == int(hex(273),16) == 0x111
True

>>> int(’111°,16) == hex(273)

False

The function hex( ) is the inverse of the function int ( , 16): whatever the int a,
we have

>>> int(hex(a),16) == a
True

Moreover, in hex or hexadecimal representations, the digits O through 9 are not
enough, we also need digits a, b, c, d, e, f representing the other integers below 16,

>>> int(’a’,16)
10
>>> int(’b’,16)
11
>>> int(’c’,16)
12
>>> int(’d’,16)
13
>>> int(’e’,16)
14
>>> int(’f’,16)
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15
Also one has

>>> int(’A’,16)

10

>>> int(’B’,16)
11

>>> int(’C’,16)
12

>>> int(’D’,16)
13

>>> int(’E’,16)
14

>>> int(’F’,16)
15

SO one may use uppercase A, ..., F and lowercase q, . . ., f interchangeably.

Oxffff00

Oxffffff

0x00ffff

Fig. 1.2 HTML color codes.

A bit is a binary digit 0 or 1. An 8-bit number is a byte. Since 2* = 16, a 1-digit
hex is a 4-bit number,

>>>  (bin(0x0), bin(0x2), bin(0x5), bin(0xf))

(’0b0’, ’'0b10’, ’OblO1’, ’Obl111l’)

>>> (hex(0b0®), hex(0b10), hex(0bl0®1), hex(0b1111))

Cox0’, '0x2’, '0x5’, '0xf’)

Since a byte is an 8-bit number, a byte is a 2-digit hex. The smallest byte is 0x00,

corresponding to the number 0, and the largest byte is 0xff, corresponding to the
number 255. There are 28 = 162 = 256 possible bytes.
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HTML color codes are given by 3 bytes, or 6 hex digits, with each byte representing
the intensity of red, green, and blue respectively, see Figure 1.2. Often the bytes in
a multi-digit hex are separated by colons, so magenta is written ££:00: ff.

The first 128 bytes, O through 127, are the original ASCII characters. These are
generated by

>>> chr(10)
,\n’

>>> chr(0x0a)
!\n!

>>> chr(65)
,Ai

>>> chr(0x41)
!A!

If we stick to these bytes, the 8-th bit in each byte is 0, so these characters are 7-bit
(Figure 1.3). If we include the remaining 128 characters, we obtain 8-bit extended
ASCII characters, which include accented letters (such as €) and math symbols. These
8-bit characters are what we defined earlier as bytes. Usually the term character is
broadened even further, up to 32 bits; these are Unicode characters. Unicode currently
handles most written languages and still has room for even more. This includes left-
to-right scripts like English and right-to-left scripts like Arabic. Chinese, Russian,
Japanese, Urdu, and many other languages are also represented within Unicode.

Hex| ASCII |Hex| ASCII |Hex| ASCII|Hex | ASCII|Hex | ASCII|Hex | ASCII| Hex | ASCII | Hex | ASCIT
00 | null |10 [CtrlP | 20 | space | 30 0 |40 @ (50| P 60 ! 70| p
01 [ CrlA |11 |CtrlQ |21 ! 31 1 |41] A 51 Q 61| a 71 q
02| CtrlB | 12 |CtrlR | 22 " 32 2 |42 B 52| R 62| b 72| r
03 | ClC |13 |CtrlS | 23 # |33 3 (43| C 53| S 63| ¢ 73 s
04 | CtrlD | 14 |CtlT | 24 $ 34| 4 (44| D 541 T 64| d 741 t
05 |CtlE | 1S |CtrlU | 25| % |35 5 |45| E 551 U 65| e 75| u
06 | CtrlF | 16 |CtrlV |26 | & |36 6 46| F 56| Vv 66 | f 76 | v
07 | CtlG | 17 |CtrlW | 27 ’ 37 7 |47 G 57| W 67| g 77| w
08 | CtrlH | 18 |CtrlX | 28 ( 38 8 |48 | H 58| X 68| h 78 X
09 | tab 19 [CtrlY | 29 ) 391 9 |49| 1 591 Y 69| i 90 vy
Oa |newline | la |Ctrl Z | 2a ® 3a : da | ] Sa| Z 6a| j Ta z
0b |CtrlK | 1b |Ctrli[ |2b| + |3b ; 4b | K 5b [ [6b]| k 7b {
Oc | CtrlL | 1c | Ctrl\ | 2¢ s 3¢ < 4c | L 5¢ \ 6¢c| 1 e |
Od | CtrlM |1d |Ctrl] |2d| - |3d| = |4d| M 5d| 1] 6d | m 7d| }
Oe | CtrIN | le | Ctrl » | 2e . 3e > 4e | N Se A 6e | n Te ~
Of |CtrlO [ 1f | Cl_|2f | / |3f| ? |4f| O 5f| - |6f]| o 7f | delete

Fig. 1.3 The 7-bit ASCII characters.
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A file is a string of characters, where the last character has ASCII code 0, the null
character. For our purposes, we equate character with byte, so a file is a string of
bytes, terminated by the null byte.

While this definition is natural, it wasn’t until the coming of UNIX in 1970 that
this became the norm. Prior to that, a file had structure, and was divided into various
sections depending on the OS. UNIX taught us that at the OS level, it’s better to
think of files as having no structure, as just strings of bytes, and to have structure
imposed on files by the particular application (e.g. document-processing, e-mail,
printing, etc.) opening the file.

1.3 Arithmetic Operations

If a and b are numbers, the standard arithmetic operations a + b, a — b, ab yield
numbers. These operations are valid whether a and b are stored as ints or floats.
If a and b are ints, they may be represented in decimal, binary, octal, hexadecimal,
and one may mix and match,

>>>  0bll + 25

28

>>>  0x11 + Obl111 - 23 * Ox111
-6247

>>> 00666 - 732

-294

>>> bin(00666 - 732)
’-0b100100110°

Division a/b yields the quotient as a float, even if @ and b are ints, so

>>> a = 10

>>> b =2
>>> c =4
>>> a/b
5.0

>>> a/c
2.5

If you want the quotient to be an integer, use a//b instead

>>> a = 10
>> b =2
>>> ¢ =4
>>> a//b

5
>>> a//c
2

>>> a = 10.0
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>>> b = 3.0

>>> a/b
3.3333333333333335
>>> a//b

3.0

Note a//b throws away the remainder, if there is one. This is floor division.
What if we want the remainder? This is given by a%b (“a mod b”)

>>> a = 10
>>> b =2
>> ¢ =4

>>>  a%b

0

>>>  a¥%c

2

>>> a = 0bl111101
>>> b = 0xf
>>> (a, b, a%b)
(61, 15, 1)

>>> a = 10.0
>>> b = 3.0
>>>  a%b

1.0

% is the modulus operator. (a, b, a%b) is a tuple, which we’ll discuss later, and
is here merely a device to print out a, b, and a%b in one step.
Powers are written a**n, so

>>> a-.'::':7 e av’raz':av':av':a:':a*a
True

for any int a.
Strings may be added. The sum is the concatenation of the strings,

>>> a = ’alpha’
>>> b = ’bheta’

>> a+b
’alphabeta’

>> b + a
"betaalpha’

>> a+ ' ' +b
“alpha beta’

>> a+b=Db+a
False

Thus a + b # b + a for strings. Strings may be multiplied by ints,

>>> a = ’alpha’
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>>>  3*a
’alphaalphaalpha’
>>>  2%*a
’alphaalpha’

>>>  0*a

>>>  (-1)*a
>>>  a*a
Error: can’t multiply sequence by non-int of type ’str’

So the operations + and * have different meanings, depending on the types of the
objects being added or multiplied. This is called operator overloading.
If ais a string, then a[i] is the character at the i-th index, with i starting from O.

>>> a = ’alpha’

>>> al[0],al[1],a[2],a[3]

(’a’,’1’,’p’,’h’")

>>> len(a)

5

>>> al[5]

Error: string index out of range

>>> a == a[0] + a[l] + a[2] + a[3] + a[4]
True

If 1en(a) is n, then the last character is a[n-1], not a[n]. The last character may
also be recovered as a[-1], so

>>> a[n-1] == a[-1]
True

A slice of a string a is a portion of a. For example, a[2:6] is the portion of the
string a starting at index 2 and ending at index 6 — 1 = 5, so

>>> a = ’alpharomeo’

>>> af2:6]

"phar’

>>> al[2:6] == a[2] + a[3] + a[4] + a[5]
True

To go to the end of the string, insert nothing after the colon,

>>>  af2:]
"pharomeo’

To start from the beginning of the string, insert 0 or nothing before the colon,

>>> al[:6]
’alphar’

Then the slice a[ : ] is the whole string, not just the same value, but the same object.
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>>> b = a[:]
>>> a is b
True

If a were a 1ist, this last would be False (Chapter §2).

1.4 Bits and Bytes

Recall an integer is represented in binary as a sequence of bits, for example
101011 =1-22+0-2*+1-2°+0-22 +1-2" +1.2°
=29+2%+2'+20=32+8+2+1=43.

n-bit numbers may be represented by the corners of the cube in n-dimensional space.
For example, all possible 3-bit numbers may be arranged on the corners of the cube
in three dimensions (Figure 1.4). All possible bytes may be arranged on the corners
of the cube in eight dimensions.

011 111

! 101

001

000 100

Fig. 1.4 Corners of the cube.

The IPv4 address of a computer on the internet is a 32-bit number, or equivalently
a 4-byte number, or an 8-hex number. This is usually written a.b.c.d, where a, b, ¢, d
are between 0 and 255 inclusive, such as 74.125.43.99, or4a : 7d : 2b : 63 as a 4
byte number.

A computer’s hardware (ethernet or wifi) address is a 6-byte number. My laptop’s
hardware address is 1¢:36:bb:2d:b7:5¢; in decimal, it is 31021394147164.

Remember a computer’s hardware address is who it is, versus its IPv4 address,
which is where it is: If you turn a computer off, it still has a hardware address, but
no IPv4.

Now ask how many n-bit numbers have exactly k digits equal to ones? For
example, there are six 4-bit numbers with exactly two 1’s; they are 1100, 1010, 1001,
0110, 0011, 0101. The general answer follows from Theorem 2.3.2 in Chapter 2,
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Theorem 1.4.1 The number of n-bit numbers with exactly k ones is

n-(n=1)-n=2)----- (n—k+1)

1-2-3..... k
Proof This is an immediate consequence of Theorem 2.3.2. O
For example, 43
276

as we saw above.

In all the exercises, don’t just plug in the code into your console. First see if you
can figure out the answer in your mind or with paper and pencil, then check your
guess against the computer’s result.

Exercises

Exercise 1.1 What do these inputs return and why?

>>>  int(int(’23.4’)) == int(’23.4’)
>>> float(float(’23’)) == float(’23’)
>>> bool(’.0001")

>>>  bool(bool(’.0001°)) == bool(’.0001’)
>>>  str(str(23)) == str(23)

>>> int(True)

>>> int(False)

>>> float(True)

>>> float(False)

>>> int(’alpha’)

>>>  int(’23’) == float(’23’)

Exercise 1.2 What are all the keywords in Python? How did you find them?

Exercise 1.3 ints are immutable objects, so how come we can convert the int 23
to a string via str(23)?

Exercise 1.4 Is an object part of the physical universe or not? Explain.

Exercise 1.5 type(23) returns int. type (int) returns type. type (type) returns
what? Why?

Exercise 1.6 How many HTML color codes are there?

Exercise 1.7 Leta = 23 and b = 46. What does

>> (a+a==Db, a+ ais b)
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return? Why? (Compare with Exercise 2.14.)

Exercise 1.8 How many IPv4 internet addresses are there?

Exercise 1.9 Show that the hex representation of 74.125.43.99 is 4a : 7d : 2b : 63.

Exercise 1.10 Let a be a str. Write code that returns a with enough leading spaces
so that the right-most letter of a is 70 spaces from the left margin.

Exercise 1.11 How many possible hardware addresses can there be? What is your
laptop’s hardware wifi address in hex? in decimal? in binary?

Exercise 1.12 How many 10-bit numbers are there with exactly 3 ones? How many
10-bit numbers are there with the same number of zeros as ones?

Exercise 1.13 Let (hl,m1,s1) and (h2,m2,s2) be times, expressed in hours, min-
utes, and seconds. Insert parentheses in

hl > h2 or hl == h2 and m1 > m2 or ml == m2 and sl > s2

so it returns True if and only if time (h2,m2,s2) is chronologically before time
(h1l,m1,s1). Test your answer!

Exercise 1.14 If p is a string containing a substring a, then p.replace(a,b) re-
places every occurrence of the string a in p by the string b. Use p.replace to write
the 129 byte number

p= '7"00:f1:63:24:49:8c:bd:82:de:73:ca:fb:54:el:7b:

41:4£:14:6e:69:94:f3:¢c7:72:c7:69:ba:4a:ae:25:
50:df:ce:c4:61:10:26:17:db:a4:fe:1c:4c:92:6¢:
c4:fb:16:d3:57:1e:4b:28:9f:b5:6d:2c:00:ec:2f:
23:1f:a2:67:c4:d1:13:ad:b1:47:dc:79:51:b8: fe:
39:41:11:bb:36:13:9d:61:58:e6:bd:02:1d:4b:ce:
57:£5:32:7d:b6:9£:23:67:£f:2d:5e:51:dd:a8:50:
44:28:59:0b:9f:4d:e5:0c:15:bd:63:3e:77:2f:b2:
cl:17:cl:£1:19:a0:e9:19:a5""’

in decimal.



Chapter 2
Binomial Theorem

2.1 Polynomials

A polynomial in a variable x is an expression of the form
p=5x>—17x+ 1.
For symbolic or algebra manipulations with a variable x, we need to load the sympy
module,
>>> from sympy import *

Throughout this chapter, we assume this module is loaded. The module needs to be
loaded only once at the beginning, after opening your notebook.
To carry out symbolic manipulations, we work with symbols

>>> var(’x’)

X
Symbols may be assigned to variables,

>>> = var(’'x’)

a
a
X

>>>  type(a)
sympy .core.symbol.Symbol

so Symbol is a type like int, but belonging to the submodule symbol of the core
submodule of the module sympy.

For clarity, we will use the same name for symbols and their corresponding
variables. For example we always assign the symbol x to the variable x. Here is an
example where we first assign a symbol to x, then assign a number to x,

>>> x = var(’x’)
>>>  2%xX + 3

19
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2x+3

>>> x = 10
>>>  2%x + 3
23

Now we work with polynomials.

>>> x = var(’x’)
>>> p = 5%x**3 - 17*x + 1

>>> p
5x3 - 17x +1
>> q =X+ 5
>>> p+q
5x3 - 16x+6
>>>  p*q

(x+506x3-17x+1)

>>>  expand(p*q)

S5x* +25x3 — 17x* - 84x +5

>>>  (p*q) .as_poly(x)

Poly(5x* + 25x3 — 17x% — 84x + 5, x, domain = Z)

>>> degree(p)

3

>>> degree(q)

1

>>> degree(p + q)

3

>>> degree(p*q)

4

>>>  (p*q) .as_poly(x).coeffs()
[5,25,-17,-84,5]

The degree of a polynomial p is the highest power of x in p.
One can have polynomials in two or more variables

>>> (a,b,t) =var(’'a b t’)

>>> p — a:‘:-.':3~,':b _ S*a-.':b*s“:z + t:‘:b + t:'::':S*a:':b + t*a

>>> degree(p,a)

3
>>> degree(p,b)
2
>>> degree(p,t)
5

>>> p

2 Binomial Theorem
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a*b — 5ab® + abt® + at + bt
Here p is considered as a polynomial in three variables a, b, t. One can also
consider p as a polynomial in ¢ with coefficients containing a’s and b’s,

>>> p.as_poly(t)
Poly(abt® + (a + b)t + a’b — 5ab?, t, domain = Z|a, b))

>>> p.as_poly(t).coeffs(Q)
[a*b, a + b, a**3*b - 5*a*b**2]

or as a polynomial in a with coefficients containing #’s and b’s,
>>> p.as_poly(a)
Poly(ba® + (=5b> + bt> + t)a + bt, a, domain = Z[t, b))

>>> p.as_poly(a).coeffs(Q)
[b’ _57‘:b=‘::“:2 + b:‘:t‘k:“:s + t, b:‘:t]

or as a polynomial in b with coefficients containing #’s and a’s,
>>> p.as_poly(b)
Poly(—=5ab? + (a® + at® + t)b + at, a, domain = Z|t, a])

>>> p.as_poly(b).coeffs()
[-5a, a**3 + a*t**5 + t, a*t]

2.2 Lists

To write code that generates Pascal’s triangle (§2.4), we introduce a new type,
the 1ist. A list is a sequence of values, separated by commas, and enclosed in
brackets,

>> a=1[’a’,1,3,1, alpha’]

>>>  id(a)
4508915104
>>>  type(a)
list

>>> len(a)
5

Be careful: A 1ist is enclosed in brackets [ ], whereas (later) a dict and a set
are enclosed in braces { }, and a tuple is enclosed in parentheses ( ). The entries
in the list are accessed as a[0], a[1], a[2], and so on. Thus for the above list,

>>>  al[0]

a
>>>  all]
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1

>>>  al2]
3

>>>  al3]
1

>>>  al4]
“alpha’
>>> al[5]

Error: list index out of range
The list with no entries is the empty list,

>> e =[]
>>>len(e)
0

Objects may be appended to a list

>>> a.append(’new’)

>>>  a

[’a’,1,3,1, alpha’, 'new’]
>>> al5]

‘new’

>>> len(a)

6

>>>  id(a)

4508915104

2 Binomial Theorem

Eventhough len(a) is6,1en([a]) is I since [a] is alist with one entry. Appending
modifies the list but returns nothing, nothing was printed out. A list a is mutable:
modifying a did not change its id. The append method takes only one argument,

>>> a.append(23,’beta’)

Error: append() takes exactly one argument

but

>>> b = [23,’beta’]
>>> a.append(b)

works,

>>> a

[’a’,1,3,1, alpha’, 'new’, [23, ’beta’]]

since b is one object, a 1ist. To append several objects, use list addition. As for

strings, list addition is concatenation,

>> a+b

[a’,1,3,1, alpha’, ’new’,[23, ’beta’],23, 'beta’]

>>> len(a+b)
9
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A range is a sequence range (1,n) of integers. Here range (1,n) starts at 1 and
stops atn — 1, justbelow n: 1,2,3, ..., n— 1.

>>> type(range(l,10))
range

A range may be converted to a 1ist,

>>> r = range(l,10)
>>>  list(r)
(1, 2, 3, 4, 5, 6, 7, 8, 9]

The Fibonacci sequence is
1,1,2,3,5,8,13,21,34, ... .,

where each term in the sequence in the sum of the previous two terms. Let £ib1(n)
denote the n-th term in the sequence, starting from n = 0, so fib1(0) == 1,
fib1(1) == 1, fib1(2) == 2, and so on. Here is code generating the n-th Fi-
bonacci number, as a function £ib1 having a single parameter n,

0>> def fibl(n):

1>> ifn==0 or n ==

2>> return 1

1>> elif n == 2:

2>> return 2

1>> else:

2>> a=2

2>> b=1

2>> for k in range(2,n):
3>> a,b = a+b,a

2>> return a

fiblisa function (§1.1)

>>> type(fibl)
function

You give the function fib1 an argument n, and it returns an int £fibl(n).

The header of the function is the statement def fibl(n):. A header is always
ended by a colon :. Below the header are ten indented lines of code that are the body
of the function. The last statement in the body of the function fibl is return a.
The body is a block of code. The three statements

ifn==0orn ==
elif n == 2:
else:

are conditionals. Each conditional is a header, followed by its own block of code. In
this case, these three headers are followed by three blocks of one, one, and five lines
of code respectively.
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If the first conditional returns True, the first body is executed. Otherwise, if the
first conditional returns False and the second conditional returns True, the second
body is executed. Otherwise, if the first and second conditionals both return False,
the third body is executed. So the logic flow here is if, then else if , then else.

The statement for k in range(2,n): is the header of a for loop. Below it is
one indented line of code that is the body of the for loop. The body of the for loop,
a,b = a+b,a, is executed repeatedly, once for each int k in range(2,n). Here
the body assigns the tuple a+b,a to the tuple a,b. Tuples are discussed in §3.5.
For now, the effect is to assign a to b, and a + b to a.

Once out of the range, the code returns a. To repeat, the last statement in the
body of £ib1 is not in the body of the for loop, it executes only after the loop is
finished.

The increment of an int k is k+1. Inside the for loop, the body executes with
k at the start of range(1,n), so with k=1, then k is incremented and the body is
executed again with k=2, and so on, until k=n, at which point the body does not
execute and the return statement is executed. Thus the last k for which the body
executes is k=n-1.

Be careful, Python is very picky about indentation. All lines in a body of code
have to be pushed to the right by the same amount, e.g. either 1 tab, or 2 spaces, or
4 spaces, etc. An indent is the amount of whitespace a body of code is pushed to the
right. Whitespace is any combination of spaces and tabs.

How does Python know when a body of code ends? When the lines are no longer
indented. Because of this, we sometimes replace the prompt >>> with 1>>, 2>>, etc.
where 1, 2, etc. indicate the number of indents in the line. If there are no indents, we
write >>> or 0>>.

The elif block of code is unnecessary in f£ib1. This is because range(2,n) is
empty when n==2, so the for loop doesn’t kick in, and £ib1(2) returns 2. Removing
this block, the code becomes

0>> def fibl(n):

1>> ifn=0 or n ==

2>> return 1

1>> else:

2>> a=2

2>> b=1

2>> for k in range(2,n):
3>> a,b = atb,a

2>> return a

In fact the if/else logic is unnecessary as well, if the range starts from 1,

0>> def fibl(n):

1>> a=1

1>> b=1

1>> for k in range(1l,n):
2>> a,b = atb,a

1>> return a
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The recursive approach to generating the Fibonacci sequence is to note that
fib1(n) is the sum of £fib1(n-1) and fib1(n-2), and to let the code reflect this
directly,

0>> def fib2(n):

1>> ifn=0 or n ==

2>> return 1

1>> else:

2>> return fib2(n-1) + fib2(n-2)

This code is recursive in the sense that the function calls itself during its execution.
This function may be written

0>> def fib2(n):

1>> ifn=0 or n ==

2>> return 1

1>> return fib2(-1) + fib2(n-2)

This code has the same effect, because the second return statement does not execute
if the first return statement executes: the second return statement is outside the
block of code following the if header.

While clear and compelling, £ib2 recalculates terms which it already knows, so it
takes a lot longer to execute. Compare the running times of £ib1(n) and £fib2(n),
you will see a difference as soon as n = 35. Nevertheless, there are many situations
where recursive coding is just the right technique.

A simple technique to avoid recalculating the same items is to keep a record of
what has been calculated, then look up the record each time before calculating. This
technique is called memoization.

0>> memo = { 0:1, 1:1 }
0>> def fib3(n):

1>> if n in memo:

2>> return memo[n]

1>> else:

2>> memo[n] = fib3(n-1) + fib3(n-2)
2>> return memo[n]

Here memo is a dict, discussed in §3.4. The dict memo assigns a value memo [n]
to each n. The first statement has a two-fold purpose: It states memo is a dict, and
assigns memo[0]=1 and memo [1]=1. For now, just think of memo[n] as a record of
the n-th Fibonacci number. If this record exists, return it; otherwise, compute the
sum of the previous two Fibonacci numbers, and create a new record. Compare the
running times of £fibl1(n) and fib3(n). £ib3 is almost as fast as £ib1l, but you
won’t see a difference till n is in the thousands.
Again, this code may be written

0>> memo = { 0:1, 1:1 }
0>> def fib3(n):
1>> if n in memo:
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2>> return memo[n]
1>> memo[n] = fib3(n-1) + fib3(n-2)
1>> return memo[n]

or, even shorter,

0>> memo = { 0:1, 1:1 }
0>> def fib3(n):

1>> if n not in memo:
2>> memo[n] = fib3(n-1) + fib3(-2)
1>> return memo[n]

Notice memo is defined, or initialized, outside the function £ib3. This has to be
s0, to have access to pre-computed values independent of which particular iteration
of £ib3 is running. If memo were initialized inside £ib3, it would be re-computed
each time £ib3 runs, defeating its purpose.

2.3 Binomial Theorem

Let x and a be two variables. Multiplying out, since ax = xa, we get
(x+a) =(x+a)x+a)=x>+xa+ax+a’ =x>+2ax +ad°. (2.3.1)
Similarly,

(x+a)* = (x + a)(x +a) = (x + a)(x” +2ax + a’)
= x° +2x%a + xa® + ax* + 2axa + @’ (2.3.2)

= x> +3ax? +3a’x + a°.

A binomial of degree n is a polynomial of the form (x + a)". Thus

(x +a)* = x* + 2ax + a*

(x+a)® = x* +3ax? +3d’x + a° 933
4 _ 4 3 2.2 3 4 (2.3.3)
(x+a) =x"+4ax’ + 6a"x" +4a’x +a

etc

In Python,

>>> (x, a) = var(’'x a’)
>>> p = (x + a)**4
>>> p

(x+a)*

>>> expand(p)
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a* + 4a3x + 6a%x% + dax3 + x*

>>> p.as_poly(x)

Poly (x4 +4x%a + 6x%a® + 4xa® + a*, x, domain = Z[a])

>>> p.as_poly(x).coeffs()
[1’ 4*3., 6*3.**2, 4-.“:a-k~k3’ a:‘::‘:4]
>>> p.as_poly(a).coeffs()
[1’ 4-.‘:X’ 67‘:X7':7':2, 47‘:X~k:':3’ X7‘:7‘:4]

There is a pattern in (2.3.3). On each line, the powers of x decrease, while the
powers of a increase. We want to find the pattern for the coefficients 1,2, 1, and
1,3,3,1, and 1,4, 6,4, 1, and so on. These coeflicients are the binomial coefficients.
More generally, the binomial coefficient

G) 0<k<n,

is defined to be the coefficient of x" % a*

since

when you multiply out (x +a)". For example,

(x +a) = x> +2ax +d° and (x +a)® = x> +3ax® +3a’x + a°,

2 2 2 3 3 3 3

The goal of the next section is to obtain a formula for (Z) The existence of such
a formula for (}) is the binomial theorem, due to Newton.

By the very definition of the binomial coeflicients, we have

n_ [ . n ny n-1 n\ n-2 2
(x+a) —(0)x +(1)x a+(2)x a

+~~~+( " )xa”_1 + (n)a".
n—1 n

When (x + a)" is multiplied out, the coefficients of both x" and & are 1, so
(5) =1land (7) = 1.
Using summation notation,' this may be written as

(234

Theorem 2.3.1 (Newton’s Binomial Theorem) For n > 0,
(x+a)" = Zn: " akx"k
r .
k=0
The binomial coefficient (Z) is also called “n-choose-k” because of

Theorem 2.3.2 The number of ways you can choose k objects from n objects is (Z)

1 ZZ:() ay is short for the sum ag + a; + - - - + an.
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Proof When you multiply out the product
(x+a)"=(x+a)x+a)...(x+a),

you are multiplying x’s and a’s. For a fixed k, the terms containing x* correspond
to choosing k x’s and n — k a’s in this product, that is choosing k objects from n
objects. Since the coefficient of x* is then the number of these terms, it follows that
the number of these terms is (7). m

Since
(x+a)" =(a+x)",

the coefficient of x"*a* when you multiply out (x + a)" equals the coefficient of

a" ¥ x* when you multiply out (x + @)", so we have

n n
= < <
(k) (n_k)’ O_k_n’

so the binomial coefficients remain unchanged when & is replaced by n — k.

2.4 Pascal’s Triangle

The key step in finding a formula for (}) is to notice
(x+a)" = (x + a)(x + a)".

Let’s work this out when n = 3. Then the left side is (x + a)*. Insert the right side of
(2.3.4) into the right side of this last equation. You get

e (s (et ([
o)+ () (e ()]
(e ) (;)xzaz; )

Equating corresponding coefficients of x, we get,
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B0k BRE0 (=66

In general, the same exact calculation establishes

n+1 n n
( k ):(k)+(k—l)’ 1<k<n. 24.1)

This allows us to build Pascal’s triangle (Figure 2.1), where, apart from the ones on
either end, each term (“the child”) in a given row is the sum of the two terms (“‘the
parents”) located directly above in the previous row.

Theorem 2.4.1

n=0: 1

n=1: 1 1

n=2 1 2 1

n=3 1 3 3 1

n=4 1 4 6 4 1

n=>5 1 5 10 10 5 1

n==6 1 6 15 20 15 6 1
n="7 1 7 21 35 35 21 7 1
n=38 1 8 28 56 70 56 28 8 1

n=9 1 9 36 84 126 126 84 36 9 1

n=10:1 10 45 120 210 252 210 120 45 10 1

Fig. 2.1 Pascal’s triangle.

In Pascal’s triangle, the very top row has one number in it: This is the zeroth
row corresponding to n = 0 and the binomial expansion of (x + a)°. The first row
corresponds to n = 1 and has the numbers 1 and 1 and corresponds to the binomial
expansion of (x + a)'. We say the zeroth entry (k = 0) in the first row (n = 1) is 1.
Similarly, the zeroth entry (k = 0) in the second row (n = 2) is 1, and the second
entry (k = 2) in the second row (n = 2) is 1. The second entry (k = 2) in the fourth
row (n = 4) is 6. In general, the entries are counted starting from k = 0, and end
with k = n, so there are n + 1 entries in row n. With this understood, the k-th entry
in the n-th row is the binomial coefficient (}). So 10-choose-2 is (120 ) =45.

Notice () = (,",) = n, and (g) = (") = 1. Insert x = 1 and a = 1 in the binomial
theorem to get
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- (g) N (’;) N (’;) s (nf 1) . (Z) (242)

You conclude the sum of the binomial coefficients along the n-th row of Pascal’s
triangle is 2" (remember n starts from 0).
Now insert x = 1 and @ = —1. You get

)L

Hence: the alternating ? sum of the binomial coefficients along the n-th row of Pascal’s
triangle is zero.

Here is the code generating the Pascal triangle rows, as a function next_row
having a single parameter parents,

0>> def next_row(parents):
1>> children = []

1>> n = len(parents)

1>> for k in range(l,n):

2>> new_entry = parents[k] + parents[k-1]
2>> children. append(new_entry)

1>> return [1] + children + [1]

next_rowis a function (§1.1)

>>>  type(next_row)
function

that returns a list: You give next_row an argument, which in this case is a list a, and
it returns the list next_row(a),

>>> a = [1,11,7]

>>>  type(a)

list

>>> next_row(a)

[1, 12,18,1]

>>>  type(next_row(a))

list

Now we generate the rows of Pascal’s triangle,

>>> next_row([1])
[1,1]

>>> next_row([1,1])
[1,2,1]

>>> next_row([1,2,1])
[1,3,3,1]

>>> next_row([1,3,3,1])
[1,4,6,4,1]

2 Alternating means the plus-minus pattern + —+ — + — .. ..
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Let’s look at the code some more. The header of the function is the statement
def next_row(parents) :. Below it are six indented lines of code that are the
body of the function. Below the for header are two indented lines of code that are
the body of the for loop. The body of the for loop is executed repeatedly, once for
each int k in range (1,n), where n is the length of the list parents. Once out of
the range, the code returns the children’s row, with the ones added on either side.

Here is a formula for (2’)

(”):"'("_1) """ (kD pan (2.4.3)

1.2k ’

7 7-6-5 7 10 10-9 10
(3) 123 _35_(4) and (2)_ﬁ_45_(8)'
The formula (2.4.3) is easy to remember: There are k terms in the numerator as well
as the denominator, the denominator starts at 1 and increases, and the numerator
starts at n and decreases.
We use the parent-child relationship (2.4.1) to establish (2.4.3). We do this by
applying induction. The idea of induction is as follows, and is based on the fact that

(2.4.3) is a formula that depends on n.
Let P(n) be any formula that depends on n. If

1. P(1) is valid, (the base step)
2. P(n+1) is valid whenever P(n) is valid, (the inductive step)

then P(n)is validfor 1,2 = 1+1,3 = 2+ 1, and so on, so P(n) is valid for all positive
integers n > 1. This is discussed further in §4.7. Here is our first use of induction.

Theorem 2.4.2 (2.4.3) is valid for all n > 1.

Proof (2.4.3) is valid when n = 1, because (i) = 1. This establishes the base step.
Now assume (2.4.3) is valid. We have to show (2.4.3) remains valid if we replace n
by its increment n + 1, so we have to show

(n+1):(n+1)(n+1—1) ----- m+1-k+1) (2.4.4)

k 1-2----- (k—1)-k ’

forl<k<n+1.
Since (Z:}) = 1 and the right side of (2.4.4) when k = n + 1 is 1, (2.4.4) is valid
fork=n+1.

Since (2.4.3) is valid when k = 0 and k = 1, we have (;) = 1 and (}) = n. By

24.1),
n+1 _[n n\ |
()= )+ )=

which is the right side of (2.4.4) when k = 1. Thus (2.4.4) is valid for k = 1.
The remaining cases of (2.4.4) to be checked are 2 < k < n. By assumption, for
2<k<n,
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( n ):n(n—l)-----(n—k+2)

k-1 12 (k—1)

and

n\ nn-=1)----- n—k+1)
()_ 1-2-+.--k :

By (2.4.1), we get

(n+1)_n(n—l) ----- (n—k+1)+n(n—1) ~~~~~ (n—k+2)
k 1-2-----k 1-2----. (k—1)
_n(n—=1)----- n-k+1) (1 1
ST 12 o)) '(E+E???T)
_nn=1)----- m-k+2)- n—-k+1) n+1
N -2 (k1) “(n—k+ 1k

_(m+Dn+1-1)-(n+1-2)-----(n+1-k+1)
- 1-2-----(k=1)-k )

But this is the right side of (2.4.4), thus (2.4.4) is valid, establishing the inductive
step. By induction, (2.4.3) is a valid formula for all n > 1. O

Now we express the binomial coefficients in terms of factorials. Given a positive
integer n, n-factorial is the product

nl=n-(n-1)-(n=2)----- 2-1.

Sol!=1,2!=2,3!=6,4! =24, and so on. As a function,
0>> def fact(n):

1>> if n == 1:

2>> return 1

1>> else:

2>> return n * fact(n-1)

This function is recursive, it calls itself within its body.

>>> fact(10)
3628800

Here the header def fact(n) : has abody consisting of four lines. In this body, there
are two headers, if n == 1: and else:. To each of these headers corresponds
a body, each consisting of one line of code. The if header contains a condition
n == 1. If the condition is true, the first body is executed; if not, the second body is
executed.

Thus, to compute fact (10), the flow is as follows: Since n = 10, the condition
n == 1 returns False, leading to the execution of the second body, which involves
fact (9). Thus computing fact (10) forces the computing of fact (9). To compute
fact(9),n = 9, so the condition n == 1 returns False, leading to the execution
of the second body, which involves fact(8). Thus computing fact(9) forces
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the computing of fact(8). To compute fact(8),n = 8, so the conditionn ==
returns False, leading to the execution of the second body, which involves fact (7).
Thus computing fact (8) forces the computing of fact (7). The flow continues like
this, down ton = 1. When n = 1, the condition n == 1 returns True, leading to
the execution of the first body, which returns 1.

Once fact (1) is returned, it is multiplied by 2, and the result 2 - 1 is returned
as fact(2), which is then multiplied by 3, and the result 3 - 2 - 1 is returned as
fact(3), which is then multiplied by 4, and the result 4 - 3 - 2 - 1 is returned as
fact(4). The flow continues like this, until fact (10) returns 10!.

By a slight modification of the code, the same amount of work yields all the
factorials 1!, 2!, 3!, ..., n!,

0>> def fact2(n):

1>> if n ==

2>> return [1]

1>> previous = fact2(n-1)

1>> return previous.append(n * previous[-1])
Then

>>> fact2(10)
[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Above we defined n! for n > 1. If we complete the definition by setting 0! = 1,
then the binomial coefficient formula (2.4.3) may be rewritten

n n!
=— 0<k<n,
(k) Kl(n — k) &
as can be verified by cancellation.

Here is code that returns the entire Pascal’s triangle

0>> def pascal():

1>> current = [1]

1>> while True:

2>> new = next_row(current)
2>> yield new

2>> current = new

Here the function header def pascal(): is followed by an indented body of 5
lines, and the while loop header while True: is followed by an indented body of
3 lines. The body of the while loop executes repeatedly until the condition in the
header returns False. In this case, the condition is True, hence never returns False,
so the body executes repeatedly forever, if it were not for yield, which pauses the
function after each execution.

Run it as follows

>>> p = pascal(Q)
>>> next(p)
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[1,1]

>>> next(p)
[1,2,1]

>>> next(p)
[1,3,3,1]
>>> next(p)
[1,4,6,4,1]

The keyword yield is discussed in §3.2.

2.5 Elementary Symmetric Polynomials

Recall (x + a)" is short for
(x+a)"=(x+a)x+a)...(x+a),

the product with n factors. We generalize (2.3.4) when (x + a)” is replaced by the
product
(x—ta)x -ta)...(x —tya). (2.5.1)

We also replace the +’s by —’s because that’s what we’ll need later. For example,
whenn =2,
(x — ha)(x — ha) = x> — (t; + h)ax + tiha* = x> — prax + pra’, (2.5.2)
where
p1 =1t +1 p2 = hi.
Notice when t; = 1 and 1, = 1, (2.5.2) reduces to (2.3.1). In Python,

>>>  (a,x,tl,t2) = var(C’a x tl t2’°)
>>> p = (x - tl*a) * (x - t2*a)
>>> expand(p)

x2 = axt; — axty + a*titr

>>> p.as_poly(x)
2 2
x“ = (at; + atr))x + a*th
Now let’s look at n = 3,
(x —na)(x — ha)(x — tza)
= x3 - (t1 + 1+ t3)x2a + (l]l‘z + 13 + 131 )xa2 - l1t2t3(13 (2.5.3)
=x —plxza + pzxa2 - p3a3,

where
pr=th+h+t3, P2 = hihh + i3 + 131, p3 = hhts.
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Notice when t; = 1 and , = 1 and 73 = 1, (2.5.3) reduces to (2.3.2). In Python, this
is returned by the code

>>> (a,x,tl,t2,t3) = var('a x tl t2 t37)
>>> p = (x - tl*a) * (x - t2%a) * (x - t3*a)
>>> p.as_poly(x)

In general, the product (2.5.1) expands to3

2 n—-1 -

n
n(x —t;a) = pox" — p1x"a + pox"2a — - £ ppxd” " F ppa, (2.5.4)

i=1

where pg = 1 and the

Pk = pr(t, ..., 1), 1<k<n,
are polynomials in ¢4, . . ., t,,, the elementary symmetric polynomials,
Pi=D 1t pr= )ty py= > Gt ..
i i<j i<j<k
and soon. Whent| =t =---=1t, =1, (2.5.4) reduces to the binomial theorem, so

pk(l,l,...,l):(Z), 0<k<n.

Moreover, replacing x and a by 1, (2.5.4) reduces to

n
n(l—li)=1—P1+pz—p3+---ipn. (2.5.5)

i=1

Ifalsot; = = --- =1, = 1, this last equation says the the alternating sum of the
binomial coefficients along the n-th row of Pascal’s triangle is zero, which we saw
in §2.4.

2.6 g-Binomial Theorem

This section follows [7].
Let g and x be variables. The g-derivative of a function f(x) is

£(gx) = £(x).

qx —x

Dy f(x) =

For example, if f(x) =1,

3 The symbol [T?, a; is short for the product aja; . . . aj,.
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D,1 = =0,
4 gx —x
if f(x) = x,
Dyr=PE2E
gx —x
and if f(x) = x?,
2_ .2 2 2
- -1
D, Lk S ik I
gx —x g-1
Define N "
(] _4 -1 1-g¢
R

Then [1], = 1 and we have
Dy1=0, Dgx=1  Dyx*=[2]yx
We call [n], “ g-n”, so [2], is g-two, [5], is g-five, etc.

Theorem 2.6.1 Forn > 0, Dyx" = [n]qx"_l.

Proof
n n n
- -1
qun = (qx) )C = 4 xn—l = [n]qxn—l.
gx —x q-1
By multiplying,
qn_l =(q—1)(q"_1+q"_2+-"+q+1)7 (2.6.1)
SO n_1
[n]qzqq_l :qn_1+qn_2+...+q+] (2.6.2)

is a polynomial in ¢ with [n]; = n. Thus for ¢ near 1, [n], is near n. For example,
[M,=1, [2,=1+q  [Bly=1+q+4~ [4,=1+q+q +4.

>>> q = var(’q’)

>>>

0>> def _q_(n):

1>> return cancel((q**n - 1) / (q-1))

>>>

>>>  type(_q.)
function

>>>  _q_(5)

@GP+ g+l
The g-derivative Dy, is linear: If f and g are polynomials,
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Dy(f+8)=Dyf +Dyg.

In this section we derive the binomial theorem in the g-setting. To this end, we
first define the g-factorial

[n]g! = [nl4ln 1], ... [2]4[1]4
forn > 1 and [0],! = 1. Then [n], is defined for n > 0 and the code is

0>> def gqfact(n):

1>> if n == 0:

2>> return 1

1>> return _g_(n) * qfact(n-1)
>>>

>>> qgfact(5)

(q+1)(q2+q+l)(q3+q2+q+l) (q4+q3+q2+q+ 1)

>>> expand(qfact(5))

g0 +4¢° +9¢% + 15¢7 +204¢° + 22¢° + 20g* + 15¢° + 9¢% + 4q + 1
>>> qfact(5).subs(qg,1)

120

>>> qfact(5).subs(q,1) == fact(5)
True

For n > 1, the g-binomial coefficient is

[n] _ [nlgln—1]4...[n—k+1],
K, 1,12, - Ik,

(2.6.3)

for 1 < k < n, and [g]q = 1. Define also [g]q = 1. Then [Z]q is defined for

O<k<nandn >0, and [Z]q = 1. For example,

A R N R
Oq q q

1 [1]q 1, g
When g = 1, [Z]q equals (7),

§

By canceling factors as before,

n _ [n]q!
[k]q—m, 0<k<n.
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n n
Hi A}

According to (2.6.3), the g-binomial coefficients are ratios of polynomials in g. Below
we see these ratios simplify, and the g-binomial coefficients are in fact polynomials
in g. For example, by recalling [5], is a polynomial in ¢ and canceling,

[5} _ [S]q[4]q _ [S]q 614 -1 C]_l
2 q

hence

T2l [y g-1 g2 -1

4 _ 2 _ 2
- 15), S =15y, (ML

-1
=" +@+@ +q+ 1)@ +1).

We derive the g-analog of (2.4.1).
Theorem 2.6.2 Forn > 1,

n+1
k

n
k-1

} ., 1<k<n 2.6.4)
q q

Proof We do the cases k = 1 and 2 < k < n separately. When k = 1,

n+1
1

=h+l]g=1+g+---+4"

q
=(l+g+-+q"H+q"=nly+q

n
— +n71+1
A

This establishes the case k = 1. When 2 < k < n, notice first, by Exercise 2.17,

n

n
0

q q

1 qn—k+1 1

kg Tn—k+1l,  [n—k+1llkly"

Then, by (2.6.3),
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n—k+1 n
+
q [k - 1L

klg
B [alyln—=1]g...[n—k+ 1], 4 gk [alyln—=1]g...[n =k +2],
[1g[2g - - [Klq [1g[2lg - [k —1lq
_nlgln—1]q. [n—k+ 1], " (L gk
B 1421y .. [k = 1]q4 klg  [n—k+1]
_nlgln=1]g.. . [n-k+1]4 o 1
[11412]4 ... [k = 1]4 [n—k+1]4[k],

[alyln=1]g...[n =k +2],
[11412]g - - - [k]q

n+1
k

q

This establishes (2.6.4). |
As a consequence,

Theorem 2.6.3 Each [Z]q is a polynomialin g, 1 < k < n.

Proof We prove this by induction (as described just before Theorem 2.4.2). When
n = 1, the result is clear, establishing the base step. To establish the inductive step,
assume [k] 1 < k < n, are polynomials in ¢. Then by (2.6.4), ["“]q, 1<k<n,

are polynomials in ¢. Since this is also true of ["+l]q 1, this establishes the

inductive step. By induction, the result is true for all positive integers n. O

Note in §2.3, we started with (2.4.1) then derived (2.4.3), but here we are starting
with (2.6.3) then deriving (2.6.4). In fact (2.4.1) and (2.4.3) are equivalent, and
(2.6.4) and (2.6.3) are equivalent.

Here is code for [Z]q using (2.6.4),

0>> def gbincoeff(n,k):

1>> ifk=0ork=norn==0orn-==
2>> return 1

1>> a = gbincoeff(n-1,k-1)

1>> b = gbincoeff(n-1,k)

1>> return expand(q**(n-k)*a+b)

Then gbincoeff(4,2) returns ¢* + ¢> + 2¢*> + g + 1.
Now let the g-binomial be

[x+alg =(x+a)x+gqa)...(x+ g 'a), n>1, (2.6.5)
and [x +a]) = 1. Then ¢ = 1 implies

[x +al} = (x+a);
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then by Exercise 2.16, x = 0 implies

142+4-4(n=1) _ on n(n=1)/2

[x+0]; =a"¢q q

The g-binomials [x + a]y are the correct g-analogs of the binomials (x +a)" because
they behave like powers x",

Theorem 2.6.4 Forn > 1, Dy[x + alg = [n]g[x + al*!.

q
Proof
[x +aly =[x+ a]g_l(x +¢" a),
[gx +aly = (gx + a)(gx + qa)...(gx + " 'a)
=(gx+a x+gqga)...(x+ a
(gx +a)g" ' (x +ga)...(x + ¢"a)
= (gx + a)g" '[x + a];’1
Hence
[gx +al? — [x + a]?
Dy[x + a]Z = 1 4 4
gx — x
[x +a]*!
= ((gr+ )" = (x+ ") ————
gx —x
q"x —x _ _
= oy = [nlylx +al)!
Here is code for the g-binomial,
>>>  (a,x,q) =var('a x q’)
0>> def gbinomial(n):
1>> if n==1:
2>> return x+a
1>> return gbinomial(n-1) * (x+q**(n-1)*a)
>>>

>>> qbinomial(2)

(a+ x)(aq + x)

>>> gqbinomial (2).as_poly(x)
x>+ (aqg + a)x + d’q

>>> gbinomial(3)

(a + x)(aq + x)(ag® + x)

>>> qbinomial(3).as_poly(x)

23+ (ag® + aq + a)x* + (a*q* + A>¢* + a*q)x + a* ¢
Now we can derive
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Theorem 2.6.5 (Gauss’ g-Binomial Theorem) Forn > 1,

n
[x +al’ = qu(k—n/z [Z] dfxnk,
k=0 q

or

[x +all = PCE n g D22 01

q

+ n (n-2)(n-3)/2 " 2y2

q +ooe+ [n]gax™ !+ X

q
Proof [x + a]j is a polynomial in x, a, and ¢, so we can write
[x +aly = Ad" + Ba" 'x + Ca" 2 x* + .. .. (2.6.6)

To establish the Theorem, we show A = ¢"""D/2, B = [n], g"""D=2/2 C =
['Z’]q g "=2=3/2 "and so on. Now O+a); = aq"" D2 s0 A = g""=D/I2_ Applying
D, to both sides of (2.6.6), by Theorem 2.6.4 we get

[nlglx +ali™" = Ba"™" + Ca"*[2]gx + ...

Plugging x = 0 yields
B= [n]q q(n—l)(n—Z)/Z.

Applying D, twice to (2.6.6) and plugging in x = 0, yields
[2]q C= [n]q [n— l]q q(n_2)(n_3)/2-
By (2.6.3), these are the correct coefficients A, B, C, .. .. O

Of course the g-binomial theorem reduces to the binomial theorem when g = 1.
Note (2.6.6) can be written

[x +al; = x"+ [n]qa)c”_1 + ga®x"?
I (2.6.7)
n n
+ 3 gaPx" 3+ latx 4

q q

Now in (2.6.7) replace x and a by 1 and x respectively, obtaining,

Ex>H X" (2.6.8)
q

n
qx2 +

n n
[1+x]g =1+[n]gx+ 3

q

What happens if we let n = oo, i.e. let n become very large? If ¢ is strictly less
than 1, |g| < 1, then g = 0, in the sense that ¢g" approaches zero as n approaches
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infinity. For example, if ¢ = .1, then
g*=.01, ¢>=.001, g¢*=.0001, ¢°=.00001,

In this case, we can insert n = oo into [r], and obtain

[Oo]q = =

which leads to

[00] _ [oo]g[o0]g .. . [o0]g
q

k (1141214 - . - [K]q
_ 1 (I-gl-q)...(1-¢q)
-9 -q)...(1-q) 1 -g)1—-¢g*...(1 - g*)
1

C(-q)1-¢¥)...(1-¢")
Inserting n = oo in [1 + x|, we obtain the infinite product
[1+x]3 = (1 +x)(1 +gx)(1 +¢°x).... (2.6.9)

Inserting n = oo in (2.6.8), we conclude the infinite product (2.6.9) equals the infinite
sum

1 q 2 q
=g T U-pi-" Ta-pt-a0-¢"

In summation notation, the equality between (2.6.9) and (2.6.10) becomes*

1+

34 (2.6.10)

Theorem 2.6.6 (Euler’s Identity)

© non © qn(n—l)/Z i
[J0+a0=2 apa—py =

In effect, when n = oo, Gauss’ g-binomial theorem becomes Euler’s identity.

Exercises

Exercise 2.1 What does the following code do?

0> 1i=0
0>> while i < 11:
1>> print(i)

4 This is not the only Euler’s Identity, there are many.
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1>> i=1+2
What happens if you remove the last statement and re-run the code?

Exercise 2.2 What does the following code do?

>>> a = input(’Enter any integer: ’)
0>> if int(a) > 5:

1>> print(’what you entered is more than 5°)
0>> else:
1>> print(’what you entered is less or equal to 5’)

What happens if you leave off int?

Exercise 2.3 With

>>> (a,b,t) = var("a b t’)
>>> p - a:‘:z’:?’:‘:b — Sz‘:a-,':b:‘::':z + t:‘:;‘csz‘:a*b

how do p.as_poly(a).coeffs() and p.as_poly(a).all_coeffs() differ?

Exercise 2.4 Let a be a list. What does a.extend(’alpha’) do? What’s the dif-
ference between

>>> a.append([23,’alpha’])}
>>> a.extend([23,’alpha’])}

Exercise 2.5 Expand (x + a)(x + ga)(x + g*a) by hand, then check your answer by
repeating this in Python.

Exercise 2.6 Here is a function that is recursive, it calls itself. Recall a//b is the
integer quotient (§1.3). Also n%2 == 0 is the same as saying there is no remainder
after dividing » by 2, or, in other words, 7 is even. What does the following code do?

0>> def collatz(n):

1>> if n ==

2>> return [1]

1>> elif n%2 == 0:

2>> return [n] + collatz(n//2)
1>> else:

2>> return [n] + collatz(3*n + 1)
Run

>>> collatz(n)

with n equal to 1, 2, 3, 4, up till 10, and also 27.
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Exercise 2.7 Show that forn > 1,

X" —a" = (x —a)x" + X" a+ X" Bd + -+ d).
Conclude if f(x) is any polynomial, there is another polynomial g(x, a) satisfying

Jx) = f(a) = (x — a)g(x, a).

Exercise 2.8 Show that for any positive numbers ¢y, f,

(t1 +t2)2 > 11t

Exercise 2.9 Let pi(t1, . . ., t,) be the elementary symmetric polynomials. Show that

n

g q%....q" ") = [k

], 0<k<n.
q

Exercise 2.10 Let gx(t1, . ..,t,) = px(t1,. . ., tn)/(Z), 0 < k < n, be the normalized
elementary symmetric polynomials. Show that for any positive numbers ?1, #, 13,
andn = 3,

ai > q0qp. B > Qg

For general n, these are Newton’s inequalities:

Cqn Ecaa. ¢ 44

Exercise 2.11 Expand

(a+t1b)(a + nb)(a + 3b)(a + t4b) = a* + p1a’b + pra*b® + pzab® + psb®,
and write out the polynomials p1, p2, p3, pa.
Exercise 2.12 Write a function bincoeff(n,k) that returns (}) using (2.4.3).

Exercise 2.13 Define the function

0>> def binomial(n):
1>> return (x+a)**n

What does the code

>>> binomial(n).as_poly(x).coeffs()[k] == bincoeff(n,k)
return? Why?

Exercise 2.14 What does

>> (a+a==Db, a+ ais b)
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returnifa = [23,’alpha’]andb = [23,’alpha’,23, alpha’]?Why?(Com-
pare with Exercise 1.7.)

Exercise 2.15 Build the top 5 rows of the g-Pascal triangle.
Exercise 2.16 Show by induction (as described just before Theorem 2.4.2) that

1+2+3+~~~+n:n(n2+1), n>1.

Exercise 2.17 Show that

I At SRS S
(n—k+1], [kl [n—k+1],0kl,

Exercise 2.18 Let f and g be polynomials, and let 2 = f - g. Derive the g-(product
rule)
Dyh(x) = Dy f(x) - g(gx) + f(x) - Dgg(x).

Exercise 2.19 Use the g-(product rule) to derive Theorem 2.6.1.

Exercise 2.20 Write a function eulerprod(n) that returns

pa(@) =1 +x)1 +gx)...(1+¢" x).
Use

>>> eulerprod(n).as_poly(x).coeffs()[1]

to compute the coefficient of x in p,(x) for n = 1,2, 3,4, 5. Use Euler’s identity and
n = oo to show

1
——=l4g+@ g+
l-gq

Exercise 2.21 Use
>>> eulerprod(n).as_poly(x).coeffs()[2]

to compute the coefficient of x%in pn(x) forn =1,2,3,4,5. Use Euler’s identity and
n = oo to show

q
m=q+q2+2q3+2q4+3q5+3q6+4q7+4q8+...

Exercise 2.22 Use the binomial theorem to show

e

k=0
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Using 1/c0 = 0, simplify n™* (}}) to show

Conclude
k 2 3

X \® mx X X
(1+;) =kz_oﬁ=1+x+5+§+

2 Binomial Theorem



Chapter 3
Sets

A set is a collection of things. For example you have the set of students in the class,
the set of students taller than 5’6", the set of integers between 1 and 5, and so on.
Sets in Python are enclosed with braces,

>>> A = {"alpha",23}

>>>  id(A)
9632421360
>>>  type(A)
set

>>> A
{’alpha’,23}

If aisinaset A, we say a is an element of A, so “an element in A” is another way
of saying a “thing in A”.

>>> ’'alpha’ in A
True
>>> ’beta’ in A
False

The key property of sets is: Sets are determined by their elements. If every element
of A is an element of B and every element of B is an element of A, then the sets A
and B are considered the same. In particular, this implies sets are unordered,

>>> C = {23,’alpha’}
>>> A == C
True

The cardinality of a set is the number of elements in it.

>>>  len(A)
2

so the cardinality of A is 2. We write |A| for the cardinality of A.
Sets can also be created by feeding a 1ist or a range to set,

47
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>>> a=[’a’,1,23,1,’alpha’]
>>>  a

[’a’,1,23,1, alpha’]

>>>  type(a)

list

>>> len(a)

5

>>> B = set(a)

>>>  type(B)

set

>>> len(B)
4

>>> B

{1, 23, ’a’, ’alpha’}

>>> U = set(range(l,10))
>>> U

{1, 2, 3, 4, 5, 6, 7, 8, 9}

As you see, sets are not the same as lists.
A set is empty if it has no elements. Since sets are determined by their elements,
there is only one empty set.

>>> E = set()

>>> E

set()

>>> len(E)

0

>>> F = set()
>>> E ==

True

Be careful though, {} isn’t the empty set, it’s the empty dict (§3.4).

>>> D = {}
>>> type(D)
dict

>>> D

{}

A set is nonempty if it has at least one element. We say A is a subset of B if every
element of A is an element of B, and we then write A C B. Equivalently, we say B
is a superset of A. For example, the set of blue horses is a subset of the set of all
horses. Also every set A is a subset of itself.

>>> A.issubset(B)
True

>>> B.issuperset(A)
True
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>>> A.add(’beta’)
>>> A.issubset(B)
False

>>> A

{23, ’alpha’, ’beta’}
>>>  id(A)

9632421360

Notice sets are mutable.
The key property of sets then can be rephrased as: If A € B and B C A, then
A=B.

Theorem 3.0.1 A set of cardinality n has (Z) subsets of cardinality k.
Proof This is an immediate consequence of Theorem 2.3.2. O

So equation (2.4.2) is saying the power set of A, the set of all subsets of A, has
2" elements. Because of this, the power set is often written 24 In other words,

[24] = 241,
Sometimes subsets of a given set U are specified by a condition, for example
A={xinU : xis even},
where the colon : is short for “such that” or “satisfying”. In Python, this can be

written using set comprehension as

>>> {x for x in range(1,10) if x%2 == 0}
{2, 4, 6, 8}

In general, a subset of the set U is specified by the set comprehension
{x for x in U <condition>}.
More generally, one may insert a function into a set comprehension,

>>>  {3*x+5 for x in range(1,20) if x%2 == 0}
{11, 17, 23, 29, 35, 41, 47, 53, 59}

3.1 Union and Intersection

If A and B are sets, then the union of A and B is the set of elements that are in A or
in B,
AUB ={x:xisin Aorisin B}.

>>> A.union(B)
{1, 23, ’a’, ’alpha’, ’beta’}
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If A and B are subsets of a set U, we may use set comprehension,

>>> U= {1, 2, 23, ’a’, ’beta’, ’c’, ’alpha’}
>> C={x for x in U if x in A or x in B }
>>> A.union(B) == C

True

The intersection of A and B is the set of elements that are in A and in B,

ANB={x:xisin Aandisin B}.

>>> A.intersection(B)

{23, ’alpha’}

>> C={x for x in U if x in A and x in B }
>>> A.intersection(B) ==

True

Theorem 3.1.1 (Distributivity) For any sets A, B, C,

AN(BUC)=(ANB)U(ANC).

Proof We have to show an equality between sets. Thus we have to show every
element of AN(BUC) is an element of (AN B)U(ANC), and vice-versa. Let a be an
element of AN(BUC). Thenaisin Aand aisin BUC. Thus aisin A and a isin B or
in C. In the first case, a is in AN B. In the second case, aisin ANC. Thus aisin ANB
orin ANC, hence in (AN B)U(ANC). This shows AN(BUC) Cc (ANB)U(ANC).
For the reverse inequality, suppose a isin (AN B)U (AN C). Thenaisin AN B or
aisin AN C. In either case, a is in A, and, in either case, a is in B U C. Thus a is in
AN (BUC). This shows AN (BUC) D> (AN B)U (AN C). By the key property of
sets, AN(BUC)=(ANB)U(ANC). O

More generally, by induction one can show (Exercise 3.3)
(AjUAU...UA,))NB=(A1NB)U(A,NB)U...U(A, N B). (3.1.1)
If AN B is empty, then we say A and B have no elements in common, or A and B
are disjoint.

>>> A.isdisjoint(B)
False

The difference B — A is the set of elements in B that are not in A. B — A is also
called the complement of A in B.

>>> B-A
{1,’a’}
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Theorem 3.1.2 (Additivity) For sets A and B,

A=(ANB)U(A-B).

Proof If aisin A, then either a is in B, or a is not in B. In the first case, aisin AN B.
In the second case, a is in A — B. Hence, in either case, a is in (AN B)U(A — B). Thus
A c (AN B)U (A - B). For the reverse inequality, let a be in (AN B) U (A — B). Then
aisin AN Boraisin A— B. In the first case, a is in A and B, while the second case,
a is in A but not in B. Hence, in either case, a is in A. Thus A > (AN B) U (A — B).
By the key property of sets, A = (AN B) U (A — B). O

3.2 Finite and Infinite Sets

A set A is finite if it has n elements for some positive integer n. The set of integers
strictly between 1 and 5 is finite, as it has 3 elements. If A is not finite, we say A is
infinite. In Chapter 4, we will see that the set of integers is infinite.

Recall (§2.2) 1ists and ranges are both subscriptable: Since sets are unordered,
trying to access an element of a set by subscript makes no sense,

>>> s = set(range(l,10))

>>>  s[0]

Error: ’set’ object is not subscriptable
>>>  s[-1]

Error: ’set’ object is not subscriptable

Since 1lists and ranges are both subscriptable, what’s the difference? With
r = range(l,n) and a = list(r), the latter data is immediately created, while
the former is only created as needed. The latter occupies n — 1 locations in memory
as soon as it is created, while the former occupies only whatever space is needed
when the code is run. To see this, run both commands with with n = 1000000. This
point is especially vivid for infinite sets.

0>> def posint():

1>> i=1

1>> while 1:
2>> yield i
2>> i+=1

Because of the keyword yield, posint is a function! that returns a generator, an
object that generates all positive integers,

>>> type(posint)
function
>>> Zpos = posint()

! Remember, posint is a function, and posint () is what the function returns.
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>>> type(Zpos)

generator

Zpos is the infinite set of all positive integers

>>> 1 in Zpos

True

>>> 100 in Zpos
True

>>> 1000000 in Zpos
True

but
>>> list(Zpos)

will never return, as Python is attempting to store the list, all the way to infinity, on
the spot. Similarly, because the set of positive integers is infinite, checking

>>> -2 in Zpos

will go on forever and never return. Python has to check all positive integers to
determine whether or not —2 is a positive integer! To drive this point home, run the
following code

0>> for a in Zpos:
1>> print(a)

Zpos is an example of an iterator. An iterator is any Python object which
allows you extract the next element,

>>> next(Zpos)

1
>>> next(Zpos)
2
>>> next(Zpos)
3

Any function with the keyword yield in its body returns a generator, and any
generator is an iterator. An iterator may be obtained from a list by feeding
ittoiter(),

>>> a = [1, 3, ’a’, ’alpha’, ’b’]

>>> next(a)

Error: ’list’ object is not an iterator
>>> 1 = iter(a)

>>>  type(i)

list_iterator

>>> next(i)

1

>>> next(i)
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3

>>> next(i)

L a ’

Similarly,

>>> s = ’alpha’

>>> next(s)

Error: ’str’ object is not an iterator
>>> i1 = iter(s)

>>>  type(i)

str_iterator

>>> next(i)

L)

a
>>> next(i)
K

>>> next(i)
'’

>>> next(i)
"h

>>> next(i)
13

>>> next(i)
StopIteration

The last step returning StopIteration, because there are no more items in i.
Similarly, one can create iterators out of sets.

Any Python object that can be fed to iter is iterable. So sets, lists, and strings
are iterable. However, an int is not iterable,

>>> a =25
>>> 1 = iter(a)
Error: ’int’ object is not iterable

In particular, applying iter twice is the same as applying it once

>>> = ’"alpha’
>>> = iter(s)
>>> 1 == iter(i)
True

So an iterator is iterable. Any iterable object may be entered into a for loop,

>>> for y in [1, 3, ’a’, ’alpha’, ’'b’]:

>>> for char in ’alpha’:

>>> for element in {1, 3, ’a’, ’alpha’, 'b’}:
>>> for n in range(1,10):

>>> for n in Zpos:
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When the loop executes, the iterable object becomes an iterator, then the loop
iterates through the entries of object by using next. But this happens behind the
scenes, all you have to do is write the loop header as above.

One last point is that an iterator is not subscriptable,

>>> s = ’alpha’
>>>  s[0]

!al

>>> 1 = iter(s)
>>>  i[0]

Error: ’str_iterator’ object is not subscriptable

So subscriptable does not imply iterable, and iterable does not imply subscriptable.

3.3 Inclusion-Exclusion

If A is a set, |A| denotes the cardinality of A. An empty set E has no elements, so
|E| = 0.

Recall sets A and B are disjoint if they have no elements in common. This is the
same as saying A N B is the empty set. When A and B are disjoint, it is immediate
that

|AU B| =|A| + |B|. (3.3.1)

If Ay, Ay, ..., A, are sets, we say they are pairwise disjoint if any two sets A;
and A; are disjoint.

Theorem 3.3.1 (Additivity) If A|, Ao, ..., A, are pairwise disjoint sets, then

[A1 U.. U Al = [Ar] + |Aa] + - + |Anl. (3.3.2)

Proof We prove this by induction (as described just before Theorem 2.4.2). When
n=1,(3.3.2)says |A|| = |Aj], so the base step is immediate. Now assume (3.3.2) is
valid, and let Aj, Ay, ..., Ay, Ayt be (n + 1) pairwise disjoint sets. Then A,,,; and
AL UA U. .. UA, are disjoint, so by (3.3.1) and (3.3.2),

[AjU...UA ]| =|A1U...UA,| +|Ans1]
= (|A1] + [A2] + -+ [An]) + |Ansi |
= Al +[As] + - + Al + A ]

This establishes the inductive step, hence, by induction, (3.3.2) is valid for all positive
integers n. o

If A and B intersect, then the common elements shouldn’t be counted twice, so
the correct formula is
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Theorem 3.3.2 If A and B are sets,

|AUB| = |A| +|B| - |AN Bl (3.3.3)

Proof By Exercise 3.2,
AUB=BU(A-B).

But B and A — B are disjoint, so
|[AUB|=|B|+|A-B|.

On the other hand, A N B and A — B are disjoint, so
|Al =|ANB|+|A-B.

Subtracting the last equation from the previous one, (3.3.3) follows. O

Fig. 3.1 Inclusion-exclusion principle.

If A, B, C are sets, the formula is

|[AUBUC| =|A| + |B| +|C| - |AN B|

(3.3.4)
—IBNC|-|CNA|+|ANBNC|.

Note there are now 3 terms with single sets, and 3 terms with intersections of pairs
(Figure 3.1). In general,

Theorem 3.3.3 (Inclusion-Exclusion Principle) If Ay, As, ..., A, are sets,?

2 Note the similarity with (2.5.5). This is not an accident.
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|A1u...uAn|=Z|A,~|—Z|AmAj|+Z|A,-mAjnAk|—.... (3.3.5)

Notice the signs alternating between + and — as you go through the formula. Here
the first sum is over all single sets, so there are n terms in the first sum. The second
sum over all intersection pairs, so the number of terms in the second sum is the
number of ways a pair of sets can be chosen from n sets, hence there are ('2‘) terms in
the second sum. Similarly, the third sum is over all intersection triples, so there are
(3) terms in the third sum. In general, the k-th sum has (}) terms.

For example, if you have 4 sets A, B, C, D, the first sum has 4 terms |A|, | B|, |C]|,
|D|, the second sum 6 terms |[AN B|, |[ANC|, |AND|, |BNC|, |BnND|, CnN D|, the
third sum 4 terms |[ANBNC|,|ANBND|,|ANCnND|,|BnNCnN D|, and the final
sum 1 term [AN BN CN D|.

Similarly, if you have 5 sets, the first sum has 5 terms, the second sum 10 terms,
the third sum 10 terms, the fourth sum 5 terms, and the final sum 1 term.

In (3.3.5), the first sum is over 1 < i < n, the second sumover 1 <i < j < n, the
third sumover 1 <i < j < k < n, and so on.

Proof The issue here is that each element a in A] U ... U A, be counted exactly
once on the right side of (3.3.5). More specifically, suppose we add an element a to
A1 U...UA,. Then the left side of (3.3.5) increases by 1. If we show that the right
side of (3.3.5) also increases by 1, (3.3.5) will then be proved, by induction on the
number of elements in A; U ... U A,,.

If a (the element we’re adding) is only a member of a single set A;, then a is not
a member of any intersection pair, nor of any intersection triple, and so on, so a is
indeed counted once on the right side of (3.3.5).

If a is a member of sets A; and A;, then a is a member of the intersection pair
A; N A;, and not a member of any other intersection pair, nor of any intersection
triple A; N A; N Ag, and so on, so, in (3.3.5), a is counted twice in the first sum, once
in the second sum, and not at all in the remaining sums. Hence a is indeed counted
once on the right side of (3.3.5).

If a is a member of sets A; and A; and Ay, then a is a member of the intersections
pairs A; N Aj, Aj N Ay, Ax N A;, and the intersection triple A; N A; N A, and not
a member of any other intersection pair, nor of any other intersection triple, and so
on, so, in (3.3.5), a is counted three times in the first sum, three times in the second
sum, once in the third sum, and not at all in the remaining sums. Since 3-3+1 =1,
a is indeed counted once on the right side of (3.3.5).

If a is a member of k sets selected from Ay, ..., A,, then a is a member of (’;)

intersection pairs, (1;) intersection triples, and so on, so, a is counted

k k k
- + -...
1 2 3
times on the right side of (3.3.5). But (§2.4) the alternating sum of the binomial

coefficients along the k-th row of Pascal’s triangle is zero, hence this last sum equals
(§) = 1. Thus a is indeed counted once on the right side of (3.3.5). m
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3.4 Dictionaries

A dict is roughly a set whose elements are key-value pairs. As such, a dict is
partially subscriptable: It is subscriptable only if the keys are present,

>>> d = { 'name’:’Bob’, ’'age’:64,’height’:’70in’ }
>>>  id(d)
4509242064

>>>  type(d)
dict

>>>  d[2]

Error: 2

>>> d[’weight’]
Error: ’weight’
>>> d[’name’]
"Bob’

>>> d[’degree’]
Error: ’degree’

The empty dict is {}.3 One may recover the keys as a list or as a set,

>>> k = d.keys()

>>>  type(k)

dict_keys

>>> k

dict_keys([’name’, ’age’, ’height’])
>>>  list(k)

[’name’, ’age’, ’height’]

>>>  set(k)

{’age’, ’height’, ’name’}

Similarly, one may recover the values,

>>> v = d.values()

>>>  type(v)

dict_values

>>> v

dict_values([’Bob’, 64, ’'70in’])
>>>  list(v)

[’Bob’, 64, ’70in’]

>>>  set(k)

{64, ’70in’, ’Bob’}

Values may be modified,

3 This is a historical accident. For consistency, the empty set should be written {} and the empty
dict should be written {:}. However, correcting this inconsistency in Python would necessitate
checking millions of lines of code around the world.
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>>> d[’name’] = ’Anne’

>>> d

{ 'name’:’Anne’, ’age’:64,’height’:’70in’ }
>>>  id(d)

4509242064

hence dicts are mutable. However, keys may not be modified, they are immutable.
A dict is iterable,

0>> for a in d:
1>> print(a)
name

age

height

Values in a dict may be any objects, while keys must be immutable objects.*
Conversely, if A is a set, we may create a dict from it with values all equal to 1,

>>> A = { 23, ’alpha’, ’'b’ }

>>> d = { 23:1, ’alpha’:1, 'b’:1 }
>>> set(d.keys()) ==

True

More generally, a dict with keys from A and with values all equal to O or 1
corresponds to a subset of A

>>> A = { 23, ’alpha’, b’ }
>>> d = { 23:1, ’alpha’:1, 'b’:0 }
>>> B = set(d.keys(Q))

>>> B.issubset(A)
True

In this sense, one can think of dicts with keys in A as generalizations of subsets of
A.

3.5 Maps

This section discusses tuple (Python) and ordered pairs, products of sets, relations,
and maps (math).
Given a and b, we want to define an object (a, b) so that

(a,b) = (¢, d) = a=c and b=d. (3.5.1)

We might try (a,b) = {a, b}, but that doesn’t work because sets are unordered,
{a,b} = {b,a}, and (3.5.1) insists the first, @, matches with the first, ¢, and the

4 This is not quite correct, keys must be hashable, which is more restrictive than immutable.
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second, b, matches with the second, d. It doesn’t matter how (a, b) is constructed, as
long as the defining property (3.5.1) holds.
We define the ordered pair (a, b) by setting

(a,b) = {{a},{a, b}}. (3.5.2)

Thus (a, b) is a set with two elements, the first being the set {a}, and the second
being the set {a, b}. Thus the first element of (a, b) has cardinality 1, and the second
element of (a, b) has cardinality 1 or 2 accordingto a = bora # b.

If A is a collection of sets, let UA denote the union of the elements of A. For
example, if A has only one element, A = {a}, then UA = a. If A has two elements
{a, b},then UA = aUb. Let NA be the intersection of the elements in A. For example,
if A has only one element, A = {a}, then NA = a. If A has two elements {qa, b}, then
NA=anbh.

Theorem 3.5.1 If (a, b) is defined by (3.5.2), then (3.5.1) holds.

Proof U(a, b) is the union of the elements of (g, b), that is the union of {a} and
{a, b}, so U(a, b) = {a, b}. N(a, b) is the intersection of the elements of (a, b), that
is the intersection of {a} and {a, b}, so N(a, b) = {a} N {a, b} = {a}. It follows that
UU(a, b) = aUband NU(a, b) = anb. Since U{a} = a, we also have UN(a, b) = a.
Hence if (a, b) = (c, d), then

a=Un(ab)=Un(cd) =c
and
aUb=UU(a,b)=UU(c,d)=cUd,
anb=NU(a,b)=nU(c,d)=cnd.
But b = ((a U b) — a) U (a N b) by Exercise 3.11. Hence

b=((aub)—a)U(anb)=((cUd)-c)U(cnd)=d.

A tuple is a sequence of values, separated by commas, and enclosed in paren-
theses,

>>> a = ( 23,’alpha’ )
>>>  type(a)

tuple

>>> id(a)
4523120912
>>> len(a)
2

>>>  al0]
23

>>>  a[-1]

“alpha’
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Just like an ordered pair (a, b), the tuple (23, "alpha’) is ordered.

>>> ( 23,’alpha’ ) == (’alpha’,23)
False

When writing a tuple, the enclosing parentheses are unnecessary

>>> 23,’alpha’
(23,’alpha’)

A set is unordered, but can be turned into a tuple,

>>> a = { 23,’alpha’ }
>>> tuple(a)

(23, ’alpha’)

>>> b = { ’alpha’,23 }
>>>  tuple(b)

(’alpha’,23)

>> a==0>b

True

>>> tuple(a) == tuple(b)
False

Ordered pairs can be generalized to ordered triples (a, b, ¢), ordered quadru-
ples (a, b, ¢, d), etc, and tuples can be written with three, four, or more elements,
(23,’alpha’, ’beta’). Tuples may be added

>>> a = (23,’alpha’ )
>>>  tuple(a)
(23,’alpha’)

>>> b = ("beta’,23)
>> a+b
(23,’alpha’, ’beta’,23)

Like lists or sets, tuples are iterable; like 1ists, tuples are subscriptable;
however, unlike 1ists or sets, tuples are immutable,

>>> a = (23,’alpha’)

>>> a == (a[0],a[l])

True

>>> al[0] = 35

Error: ’tuple’ object does not support item assignment

Given sets X and Y, the product X X Y is the set of all ordered pairs (x, y), with
xinX and yinY,
XxXY={(x,y):xinX,yinY}.

A relation between X and Y is a subset f of X X Y. If (x,y) is in f, we say x is
related to y and y is related to x under f. The broadest relation between X and Y
is f = X XY, everything in X is related to everything in Y. The strictest relation
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between X and X is the empty relation, where nothing is related. The diagonal
relation is d = {(x, x) : x in X}. Then every x in X is related only to itself under d.

The source of a relation f C X X Y is the set of x in X that are related to some
yin Y under f. So the source is where the relation “starts”. The target of a relation
f € X XY is the set of y that are related to x for some x in X. So the target is where
the relation “ends”. The target is denoted f(X) and also called the image of X under
f-

For example, let X be the set of all people, and Y the set of all horses. Let f be the
relation x rides y, so (x, y) is in f if x rides y. The source is the set of people who
ride horses, and the target is the set of horses that are ridden. Moreover, given x,

{y:(xy)in f}
is the set of horses that x rides, and given y,

{x: (xy)in f}

is the set of people that ride y. The source of f is X if all people ride horses. The
target is Y if all horses are ridden.

A map from X to Y (in the strict mathematical sense) is a relation between X and
Y where each x in X is related to exactly one y in Y. For example, the people-horse
relation f is a map if all people ride horses, and each person rides exactly one horse.
Then we have a map from people to horses.

Note a Python dict is analogous to a map. The keys are in the source, and the
values are in the target.

Fig. 3.2 A map.

If f is a map and (x, y) is in f, we write y = f(x). For example, f(Jim) is the
horse that Jim rides.

A map f from X to Y is injective if no two x’s go to the same y: f(x) =y = f(x’)
implies x = x’. For example, the people-horse relation f is an injective map if all
people ride horses and no two people ride the same horse.

A map f from X to Y is surjective if the target of f is Y: every y is related to
some x. For example, the people-horse relation f is a surjective map if all people
ride horses and every horse is ridden.

If f is amap from X to Y, and g is a map from Y to Z, the composition h of f
with g is the map from X to Z given by applying f then g, h(x) = g(f(x)). The
identity on X is the map i from X to X which leaves everything unchanged, i(x) = x.
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A map g from Y to X is an inverse of a map f from X to Y if the composition of
f with g is the identity on X, g(f(x)) = x for all x in X, and the composition of g
with f is the identity on Y, f(g(y)) = y for all y in Y. Simply put, this says the map
g undoes what the map f does: f is reversible.

If f has an inverse g, we say f is bijective. A map is bijective if and only if it is
injective and surjective (Exercise 3.12).

For example, the people-horse relation f is a bijective map if all people ride
horses, all horses are ridden, each person rides exactly one horse, and each horse
is ridden by exactly one person. In other words, f is a bijective map if people and
horses can be paired off in a one-to-one fashion.

We say sets X and Y have the same cardinality if there is a bijective map between
X and Y. This applies even when X and Y are infinite sets.

Exercises

Exercise 3.1 Following the proof of Theorem 3.1.1, show for any sets A, B, U,
U-(AUB)=(U-A)n U - B), U-(AnB)=U-A)U(U - B).

This is often paraphrased as: The complement of the union is the intersection, and
the complement of the intersection is the union.

Exercise 3.2 Show that (AU B)N B = Band (AU B) — B = A — B. By replacing A
by AU B in Theorem 3.1.2, show AU B = BU (A — B).

Exercise 3.3 Show (3.1.1) by induction.

Exercise 3.4 If A and B are subsets of U, write code returning A — B as a set
comprehension using not in.

Exercise 3.5 Let f be any function returning a list. Insert the statement yield at
the end the function body. What does £ return now? What if f originally returned a
str?

Exercise 3.6 If yield were replaced by return in the function posint, what would
be the type of posint()?

Exercise 3.7 A survey asks students whether they have a laptop, a car, or a mobile
phone. 40 have a laptop; 60 have a car; and 50 have a mobile phone. 25 have a laptop
and a car. 30 have a car and have a mobile phone. 35 have a laptop and a mobile
phone. 10 students have all three. How many students have at least one of the three?

Exercise 3.8 How many integers 1 < a < 10000 are divisible by 2, 3, or 5?

Exercise 3.9 Let V be a set with |V| = k. What is the number of dicts d with
len(d) == nandd.values() in V?
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Exercise 3.10 The values of the roman numerals are given by the dict
{’M’:1000,’D’:500,’C’:100,’L’:50,’X":10,’V’:5,’1":1}
e Write a function highest that returns the index of the first occurrence of the
highest-value numeral:
highest("XII’) = 0, highest(’CDLVCDXII’) = 1.

e Write a function roman that translates a number from roman to decimal as fol-
lows. In roman notation, numerals are initially written left-to-right in decreasing
order,

>>> roman(’MCCLXII’) == 1000 + 200 + 50 + 10 + 2
True

If, however, a numeral has greater value than numerals in a block of numerals
to its left, then that block is counted with a minus. Thus roman(’IX’) is
-1+10=9, and

>>> roman(’MCLDII’) == 1000 - (100+50) + 500 + 2
True

Exercise 3.11 Show that for any sets A, B, B=((AU B) — A) U (BN A).

Exercise 3.12 Show that a map f from X to Y is bijective if and only if it is injective
and surjective.

Exercise 3.13 Print out a dict whose keys are range(0,256) and whose values
are the ASCII characters.






Chapter 4
Integers Z

In this chapter, we go back to basics and study integers from scratch. We do this
because we will need to contrast standard arithmetic with modular arithmetic in
Chapter 6.

What are the integers Z? Integers are often called the “whole numbers.” This is
like answering “Who is John?” by saying “John is a person.” It’s just not informative.
Sometimes integers are listed

.,=3,-2,-1,0,1,2,3,...

This actually lists only seven integers, and the three dots are supposed to mean
something like “there are more”. Since there are infinitely many integers, we cannot
list them all.

We have no recourse other than to describe integers by their properties. There are
ten basic properties or axioms that characterize the integers. They are

1. additive commutativity (4.1.1)
additive associativity (4.1.2)
existence of zero (4.1.3)

existence of negatives (4.2.1)
multiplicative commutativity (4.3.1)
multiplicative associativity (4.3.2)
existence of one (4.3.3)

distributivity (4.4.1)

A A o A

minimality (4.5.1)

_
S

zero is neither positive nor negative (4.5.2)

65



66 4 Integers Z

Everything you know about arithmetic is a consequence of these axioms. In fact,
our arithmetic manipulations in the previous chapters depended on these axioms, or
their consequences, as developed in this chapter. While many of these axioms may
seem obvious, in Chapter 6, we study the modular integers, where things behave
differently. Without providing details, let us here describe the framework.

In §A.1, we show there is essentially one set Z equipped with addition and
multiplication operations satisfying these axioms.

It is important to keep the context in mind. For example we introduce the concept
of reciprocal, in three different contexts.

When the context is the rational numbers Q (Chapter 7), every rational a # 0 has
a reciprocal, for example, the reciprocal of 2 is 1/2, as you learned in grade school.
When the context is the integers Z (the present chapter), only @ = 1 and a = -1
have reciprocals. When the context is the modular integers Z,, (Chapter 6), a has a
reciprocal if and only if a and the modulus n have no common factor.

So we get different answers, different behavior, depending on the context. Now
we turn to the systematic development of the basic properties of Z. In §A.1, we are
by necessity completely formal in defining exactly what Z is. Until then, we describe
the axioms of Z more informally as properties.

4.1 Addition

Integers may be added. If a and b are integers, a + b is their sum. A basic property
is commutativity: It doesn’t matter which order we add the integers:

a+b=b+a for every a and b. 4.1.1)

How do we add a bigger bunch of integers, say a + b + ¢? One way is first add a and
b, then add c to the sum a + b, yielding (a + b) + c¢. Another way is to first add b and
¢, then add a to the sum b + ¢, yielding a + (b + c). Associativity guarantees that it
doesn’t matter which way you add them, the answer is the same:

(a+b)+c=a+(b+c) for every a and b and c. 4.1.2)

Once you believe in associativity, then you can add any number of integers, it doesn’t
matter in which order you add them.
There is a special integer 0, called zero, satisfying

a+0=0+a=a for every a. 4.1.3)

If an integer a is not zero, then we say a is nonzero.
Can there be more than a single zero, i.e. an integer satisfying (4.1.3)? That’s a
weird question, but let’s show the answer is no.

Theorem 4.1.1 There is only one integer zero.
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Proof Suppose z and 7’ are integers both satisfying the same property (4.1.3), i.e.
a+z=z+a=aforeverya,and a+z =z’ + a = a for every a. Then inserting
a = 7’ in the first equation yields z + z’ = 7/, and inserting a = z in the second
equation yields z + z” = z. Thus

4.2 Subtraction

To every integer a corresponds its negative —a: This is the integer b which when
added to a yields zero:
a+b=a+(-a)=0. 4.2.1)

Negativity is visualized as follows: If Tom gives Mary $5, then after that Tom takes
$5 from Mary, Tom’s net worth is unchanged. Therefore
giving $5 + taking $5 = nothing changed,
which we write as
—(giving $5) = taking $5.

To repeat, —a is the integer you add to a to obtain the sum 0. For example, -0 = 0,
since 0+ 0 = 0.

Could an integer have more than a single negative? That’s another weird question,
but let’s show the answer is no.

Theorem 4.2.1 Each integer has exactly one negative.
Proof Suppose a is an integer and both b and ¢ are negatives of a, so we are given
a+b=0anda+c=0.By(4.1.1), we then have ¢ + a = 0, so

b=0+b=(c+a)+b=c+(a+b)=c+0=c.

Here we used (4.1.3), followed by ¢ + a = 0, followed by (4.1.2), followed by the
given a + b = 0, followed by (4.1.3). So b = c. O

So each integer a has a single negative, which we always write as —a.
Theorem 4.2.2
—(-a)=a for every a.
Proof Since (—a) + a = a + (—a) = 0, it follows from (4.2.1) that a is the negative

of —a. O

Integers may be subtracted. If a and b are integers, we say ¢ = a — b is their
difference if a = ¢ + b. Subtraction a — b is simply the sum of a and the negative of
bs
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a—-b=a+(-b).

So if you understand addition and negatives, you understand subtraction.

4.3 Multiplication

Integers can be multiplied: If a and b are integers, ab is their product. A basic
property is commutativity: It doesn’t matter which order we multiply integers:

ab = ba for every a and b. 4.3.1)

How do we multiply a bunch of integers abc? One way is first multiply a and b, then
multiply ¢ with the product ab, yielding (ab)c. Another way is to first multiply b and
¢, then multiply a with the product bc, yielding a(bc). Associativity guarantees that
it doesn’t matter which way you multiply them, the answer is the same:

(ab)c = a(bc) for every a and b and c. (4.3.2)

Once you believe in associativity, then you can multiply any number of integers, it
doesn’t matter in which order you multiply them.
There is a special integer 1, called one, satisfying

a-l=1-a=a for every a. 4.3.3)

Can there be more than a single one, i.e. an integer satisfying (4.3.3)? Let’s show the
answer is no.

Theorem 4.3.1 There is only one integer one.

Proof Suppose o and o’ are integers both satisfying (4.3.3), i.e. ao = oa = a for
every a, and ao’ = o’a = a for every a. Then inserting a = o’ in the first equation
yields 0o’ = 0’, and inserting a = o in the second equation yields 0o’ = o. Thus

4.4 Distributivity

Addition and multiplication are related by distributivity:
a(b+c)=ab+ac for every a and b and c. 4.4.1)

Here are some consequences of distributivity:

Theorem 4.4.1 Oa = 0.
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Proof To check this, look at the chain of equations,

0a=0+0a=((—a)+a)+0a
=(-a) + (a + 0a) = (—a) + (1a + Oa)
=(-a)+(1+0a=(-a)+la=(-a)+a=0.

This is a chain of eight equations, and so needs eight reasons to be true: The reasons
are (4.1.3), then (4.2.1), then (4.1.2), then (4.3.3), then (4.4.1), then (4.1.3), then
(4.3.3), then (4.2.1). O

As a consequence,
Theorem 4.4.2 (—1)a = —a.
Proof We have
a+(-a=1la+(-1)a=(1+(-1))a =0a=0,
because (4.3.3), then (4.4.1), then (4.2.1), then Theorem 4.4.1. m]
Combining Theorem 4.2.2 and Theorem 4.4.2 yields

(-1)(=1) = =(=1) = 1. (4.4.2)

4.5 Positivity

Let Z™* be the set of all integers a that are sums of ones,’
a=1+1+---+1.

These are the positive integers. So Z* contains
L1+L1+1+1,...

To increment an integer a means to add 1 to it, resulting in the increment a + 1. Thus
Z* consists of 1 and its successive increments. Recursively, a number 7 is a positive
number if and only if n = 1 or n is the increment of a positive number.

We write a > 0 to mean a is positive. By definition of Z*, the integer 1 is positive,
1>0.

Let Z~ be the set of all negatives of the positive integers,

a=—-1+1+---41).

These are the negative integers. So Z~ contains

! This is explained in detail in §A.1.
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-L-(1+1),—(1+1+1),...

We write a < 0 to mean a is negative.

Be careful to distinguish between a negative integer and the negative of an integer:
The negative of the integer —1 is a positive integer. More generally, a is positive
implies —a is negative, and a is negative implies —a is positive.

The integers are minimal, in the sense

every number is positive, or negative, or zero, 4.5.1)

and moreover
zero is neither positive nor negative. 4.5.2)

In particular this is saying 1 and O are distinct integers. Since a = a+ 1 implies 0 = 1,
it follows that a and a + 1 are distinct integers for any integer a. This last property is
called positivity, because it forces Z* and Z~ to be disjoint (Theorem 4.5.2).

Theorem 4.5.1 The set " of positive integers is infinite.

Proof If Z™ were finite, then there would be two different sums of ones that are the
same integer. But then their difference is a sum of ones that equals zero. But (4.5.2)
states zero is neither positive nor negative. ]

Since a sum of ones added to another sum of ones results in yet another sum of
ones,
the sum of positive numbers is positive. (4.5.3)

By (4.4.1), a sum of ones multiplied with another sum of ones results in another sum
of ones,
the product of positive numbers is positive. 4.5.4)

So positive times positive is positive. If a < 0 and b > 0, then —a > 0, so (—a)b > 0,
SO
ab = —(-1)(ab) = —(-a)b < 0.

Hence negative times positive is negative. Similarly negative times negative is posi-
tive.

The four properties (4.5.1), (4.5.2), (4.5.3), (4.5.4) are summarized by saying Z
is totally ordered ((A.0.1)).

As a consequence, we have: For any integers a and b,

ab=0 = a=0 or b=0. 4.5.5)
This implies the cancellation property: For any integers a, b, c,
ab=ac and a#0 = b=c. (4.5.6)

Theorem 4.5.2 No integer is both positive and negative: Z and 2~ do not intersect.
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Proof Suppose a is both positive and negative. Then by definition of negative,
a = —b for some positive b. By definition of —b, this means a + b = 0, which
contradicts (4.5.2) and (4.5.3). Thus no integer is both positive and negative. m]

The upshot is: The integers Z are divided into disjoint sets Z*, {0}, and Z~,
whose union is Z,
Z"U{0}uZ =127,

which is the same as saying for every integer a,

a>0 or a=0 or a<0.

More generally, we say a > bor b < a when we meana —b > 0. Thena = b+ ¢
with ¢ > 0 is the same as saying a > b, and for any integers a and b,

a>b or a=b>b or a<b.

The absolute value |a| of an integer a is

a a >0,
lal =

—a a<0.

Theorem 4.5.3
a>b and b>c - a>c.

Proof a > bmeansa —b > 0,b > c means b — ¢ > 0, and (4.5.3) implies
a-c=(a-b)+(b-c)>0,
soa > c. O
Similarly,

Theorem 4.5.4 a > band ¢ > d implya+c¢ > b+d, and a > b and ¢ > 0 imply
ac > be.

Proof a > bmeansa — b > 0, ¢ > d means ¢ — d > 0, and (4.5.3) implies
(a+c)-(b+d)=(a-b)+(c—d) >0,
soa+c>b+d. By(4.5.4),
ac —bc = (a - b)c >0,
so ac > bc. O

We definea > btomeana > bora = b,anda < btomeana < bora = b.
Then this last theorem may be rewritten
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Theorem 4.5.5a > band c > d implya+c > b+d, and a > b and ¢ > 0 imply
ac > bc.

Let us show a > b implies —a < —b. If we let = denote implies, then

a>hb = a-b>0
= —(a-b)<0
= (-a)-(-b)<0
= -—a<-b.

Theorem 4.5.6 There are no integers between 0 and 1: For any integer a, then a < 0
or a > 1. More generally, for any integer n, there are no integers between n and
n+ 1: Either a < nora > n+ 1, for every integer a.

Proof Eithera < 0Oora > 0.If a > 0, then a is a sum of one or more ones
a=1+1+---+1=1+c¢

with ¢ > 0, so a > 1. For the general case, a is between n and n + 1 exactly when
a — n is between 0 and 1. But there are no integers between 0 and 1, so there are no
integers between n and n + 1. O

4.6 Division

We say b divides a if a = bc, where a, b, and c are integers. In this case we write
a/b = c and we call ¢ the quotient. For example, the even integers are the integers
divisible by 2, and the odd integers are the integers that are not.

The simplest case is when a = 1: We say an integer c is a reciprocal of an integer
b if

bc=cb=1.

Remember both b and ¢ are integers. So for example, 1 is a reciprocal of 1, since
1-1 = 1. Also zero does not have a reciprocal, since 0b = 0 is never equal to 1.
Finally below (4.4.2) shows —1 is the reciprocal of —1.

Could an integer have more than a single reciprocal? Let’s show the answer is no.

Theorem 4.6.1 Every integer has at most one reciprocal.

Proof Suppose a is an integer and both b and ¢ are reciprocals of a, so we are given
ab=1and ac = 1. By (4.1.1), we then have ca = 1, so

b=1b=(ca)b=c(ab)=cl =c.

Here we used (4.3.3), followed by ca = 1, followed by (4.3.2), followed by the given
ab = 1, followed by (4.3.3). So b = c. O
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So each integer a has at most one reciprocal, which we always write as 1/a. Not
every integer has a reciprocal, for example 0 doesn’t have one. What other integers
have reciprocals?

A unit is an integer that has a reciprocal. The most important result about recip-
rocals is

Theorem 4.6.2 The only units are £1. If a # +1, then a does not have a reciprocal.

Proof To see why, if a # £1,thena = 0ora > 1 or a < —1. We already know
a = 0 does not have a reciprocal. Suppose now a > 1. Since positive times negative
is negative and 1 is positive, a reciprocal b of a must be positive. Thus b > 1 hence

ab>1b=0b>1,

so ab can’t equal 1, so b is not a reciprocal of a. Since b was any positive integer,
a does not have a reciprocal. Now suppose a < —1. If a had a reciprocal b, then —a
would have a reciprocal —b, since 1 = ab = (—a)(-b). But —a > 1, so this can’t
happen, so a doesn’t have a reciprocal. O

If b has a reciprocal, then we may write the quotient

1
alb=a- p
as the product of a and the reciprocal of b. Even if b does not have a reciprocal,
integers may sometimes be divided by b. For example, even though there is no integer
1/2, you can divide 6 by 2 since 6/2 = 3, but can’t divide 6 by 4: There is no integer
c satisfying 6 = 4¢. Exactly when we can or can’t divide is taken up in §5.1.
To summarize, Theorem 4.6.2 says you can divide every integer by a only when
a = +1. You can’t divide any integer by 0, you can’t divide every integer by 2, but
you can sometimes divide by 2; you can’t divide every integer by 3, but you can
sometimes divide by 3, etc.

4.7 Induction

Let S be a set of integers, so S C Z. We say S is inductive if
1. S contains 1, and
2. S contains the increment n + 1 of each n in S.

Given what we’ve seen of Python, it may better to call such a set recursive. However,
we stick to the standard terminology.

In §4.5, Z* was defined as the set of all sums of ones. Since the increment of a
sum of ones is a sum of ones, Z* is inductive. In fact, Z* is the smallest inductive
subset of Z: If S is any inductive subset of Z, then S contains all sums of ones, hence
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S contains Z*. Thus an equivalent definition is: Z* is the smallest inductive subset
of L.
As an immediate consequence of this, we have the Principle of Induction:

Let P(n) be a statement that depends on n. If

1. P(1) is valid, and

2. P(n+ 1) is valid whenever P(n) is valid,
then P(n) is valid for all positive integers n > 1.

Let a be an integer. One can show (§A.1) there is a unique map f from Z* to Z
satisfying
fM=a,  fln+)=f)a nxzl

This map is the power map of a, and is written f(n) = a". Then a! = a and

One can also show (§A.1) there is a unique map g from Z™ to Z satisfying
g()=1+a, gn+1)=gn)+a"', n>1.

This map is the geometric sum map, and is written

n

g(n)=1+a+---+a”=2ak.
k=0

The existence of the power map f and the geometric sum map g is established
after Theorem A.1.4.
Then we can derive

A —1=(@-D@" +d" '+ +a+), n>l, (4.7.1)
by induction, as follows. Writing (4.7.1) in terms of f and g, we have to show
fn+1)—-1=(a-1gn) 4.7.2)
forn > 1. Forn = 1, (4.7.2) is valid since
fQ)-1=a*-1=(a-1)(a+1)=(a-1)g).
Assume (4.7.2) is valid. Then

fm+2)—-1=f(n+1a-1
=fn+la-—fn+ 1)+ f(n+1)-1
=(a=-1f(n+1)+(a-1gn)
=(a-D(f(n+1)+gn)=(a-1grn+1).
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By induction, this establishes (4.7.2), hence (4.7.1). The identity (4.7.1) was used in
(2.6.1).

Let S be a set of positive integers. For example, S may be the set of integers
between 10 and 20, or the set of even integers. We say a is the minimum of S if

1. aisin S,
2. b>aforall bin S.

When a is the minimum of S, we write @ = min S. For example, 1 = min Z™*, since
a>1whena > 0.

Theorem 4.7.1 (Well-Ordering Principle) Every nonempty set S of positive inte-
gers has a minimum.

Proof Assume S has no minimum. Since S is nonempty, we may select some ng in
S. Since S has no minimum, there is n; in S satisfying n; < ng. By Theorem 4.5.6,
this is the same as saying n; < ng — 1. Since S has no minimum, there is n, in S
satisfying ny < nj. By Theorem 4.5.6, this is the same as saying n, < n; — 1, which
in turn implies ny < ny — 2. Since S has no minimum, there is n3 in S satisfying
n3 < ny — 1 < ng — 3. Continuing in this manner, we obtain a sequence of positive
integers ng, ny, 0y, N3, ... satisfying

ng < ng—k, k> 1.

But this can’t happen, because for k = ng+1, this saysnx < —1 < 0, which contradicts
the positivity of ng, because an integer can’t be both positive and negative (Theorem
4.5.2). Hence S has a minimum. m|

Since modular integers (Chapter 6) are both positive and negative, the downward
chain 0, —1, -2, -3, ... consists of positive integers and has no minimum. Thus
Theorem 4.7.1 does not hold for modular integers.

If S is a set of integers, we say a = max S if aisin S and a > k for all k in S. We
say S is bounded above if there is some integer m satisfying m > k for all k in S.
Exercise 4.8 shows that a set that is bounded above has a max.

Exercises

Exercise 4.1 Show that negative times negative is positive.
Exercise 4.2 Show (4.5.5).
Exercise 4.3 Show the cancellation property (4.5.6).

Exercise 4.4 Suppose a and b are integers with |a| < b. Suppose b divides a, so
a = bc for some integer c. Show that c = a = 0.
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Exercise 4.5 Suppose a and b are integers with b > 0. Let S be the set of positive
integers k > 1 satisfying a — kb < 0. Show that S is not empty.

Exercise 4.6 Continuing the previous exercise, let ¢ = min S — 1. Then show ¢gb <
a<(g+1)b.

Exercise 4.7 Let S be a nonempty set of integers, and let m be an integer. Suppose
S is bounded below by m. This means k > m for all k in S. Show that min § exists.

Exercise 4.8 Let S be a nonempty set of integers, and let m be an integer. Suppose
S is bounded above by m. This means k < m for all k in S. Show that max S exists.



Chapter 5
Prime Numbers

5.1 Divisibility

If ¢ = ab = ba, then we say a is a factor of c, or c is a multiple of a, or a divides c,
or c is divisible by a. For example, 15 is a multiple of 3, 16 is not a factor of 4 nor of
29, 3 divides 12, but 17 is not divisible by 3. Since 0 = 0b for any integer b, every
integer divides zero.

A simple but important fact is

Theorem 5.1.1 If d divides a and b, then d divides a + b and a — b.

Proof Suppose d divides a and b. Then a = a’d and b = b’d, so by distributivity,
a+b=dd+b'd=(a" +0b)d,

so d divides a + b. Since a — b = a + (—b), and d divides b if and only if d divides

—b, d also divides a — b. 0O

By taking a = 0, we see a divides b if and only if a divides —b.
Recall the binomial coefficients. These are

(n):n(n—l)...(n—k+1)

X a s 1<k<n.

Since these are integers, k! divides n(n — 1)...(n — k + 1), which is a product of k
consecutive positive integers.

Theorem 5.1.2 The product of k consecutive positive integers is divisible by k!.

Now take the positive integers greater than one: 2,3, 4, ... and start multiplying
them in all possible ways

2.-2,2-3,2-43-3,2-52-6,...

We get
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4,6,8,9,10,12,...

If we multiply all possibilities, do we end up with all integers greater than one, or
are some integers missing? Are there integers that won’t appear in the resulting list?
Yes, these integers

2,3,5,7,11,13,...

are missing. These are the positive primes.

An integer a is composite it a = bc for other integers b and ¢, neither equal to
+1 (+ means plus-or-minus). For example, —6 = (—2)3 is composite. An integer a
is prime or is a prime number if a is not composite. We stress that a prime may be
negative: —5 is a prime.

Let’s show 5 is a prime number. If 5 were composite, then 5 = ab withbotha > 1
and b > 1,soa and bequal 2, 3,or 4. If a and b are both 2, thenab =4 # 5. Ifa > 2
and b > 3,then ab > 23 = 6 # 5. Hence in no case is ab = 5. Thus 5 is prime. If -5
were composite, —5 = bc, then 5 = (—b)c is composite. Hence —5 is also prime.

Theorem 5.1.3 There are infinitely many prime numbers.

Proof Argue by contradiction. If there were only finitely many positive primes, call
thema, b, c, ..., then

n=1+abc...
cannot be divided by any of a, b, c, . . ., so n must be a positive prime. This contradicts
the assumption that a, b, c, ... were all the positive primes. O

The fundamental theorem of arithmetic (§5.5) states that every integer other
than +1 is a product of prime numbers, and, up to ordering, in a unique manner.
Factoring an integer n means displaying its prime factors. Thus 12 = 2 -2 -3 so
[2,2,3] is the prime factorization of 12. Similarly, [3, 3, 3607, 3803] is the
prime factorization of 123456789.

A basic problem is to find an efficient factoring procedure for a given integer 7.
While there are simple solutions to this problem for moderately sized integers, they
quickly become unworkable for large integers.

The simplest procedure, for n positive, is to try all integers 1 < p < n. If p divides
n, and we're checking integers in order from smallest to largest, then p is a prime
factor of n, and we have reduced the problem to factoring n//p. This is a recursive
procedure. Since divisibility of n by p is the same as n%p == 0, the code is

0>> def factor(n):

1>> for p in range(2,n):

2>> if n%p == 0:

3>> return [p] + factor(n//p)
1>> return [n]

This function returns a 1ist. It starts by checking whether 2 divides n. If so, the
functions prepends [2] to factor(n//2). Otherwise, checks whether 3 divides #,
and so on. If the list is still empty at the end of the loop, n is prime and the function
returns [n].
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Much better codes can factor around 80 digit numbers in a reasonable time. But
the best current codes together with the fastest computers cannot factor generic 400
digit numbers in fewer than hundreds of years.

5.2 Division Algorithm

Let a and b be integers with b > 1. The division algorithm states there is an integer
g and and an integer r satisfying

a=qb+r, 0<r<hb. 5.2.1)

For example, a = 9and b = 2 impliesg =4 andr = 1,since9=4-2+1,anda =7
and b = 10 implies g = O and r = 7, since 7 = 0 - 10 + 7. The integers g and r are
the quotient and the remainder.

To see why such a g and r must exist, look at the arithmetic sequence

...,a—=3b,a-2ba—-b,a,a—b,a-2b,a-73b,...

We claim that this sequence is eventually negative: There is a positive multiple kb of
b such that a — kb is negative. If a > 0, choosing k = a + 1 works, since b > 1 and
a—-(a+1)b<a-a-1<0.1fa <0, choosing k = 0 works, since a —0b = a < 0.
Therefore in either case, the sequence is eventually negative.

Let’s focus on the least integer k for which the corresponding term a — kb in this
sequence is negative. More specifically, let

S={kinZ:a-kb<0}.

We just saw S is nonempty.

We claim S is bounded below. If ¢ > 0, then k in § implies kb > a > 0 hence
k>0.Ifa <0, then a > ab, so k in S implies kb > a > ab, hence k > a. Hence,
in either case, S is bounded below.

By Exercise 4.7, min S exists, so we may set ¢ + 1 = min S and » = a — gb. By
definitionof S,a—(g+1)b < Qorr = a—gb < b.Since gisnotin S,r = a—gb > 0.
We conclude ¢ and r satisfy (5.2.1).

Moreover, the integers ¢ and r are unique. To see why, let ¢’ and r’ be integers
satisfying

a=qg'b+r, 0<r' <b. (5.2.2)

and suppose r’ > r. Then both r and »’ are between 0 and b, so either O < 7' —r < b
or 0 < r —r’ < b. We may safely assume 0 < r’ — r < b, otherwise we switch the
roles of r and r’. Now subtract (5.2.1) from (5.2.2). We get

blg-—q")=G"-r), (5.2.3)
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so b divides ' —r. But 0 < r’ —r < b, so we must have r’ = r (Exercise 4.4).
Inserting this into (5.2.3), by Exercise 4.5.5, we obtain g = ¢’.
We have derived the

Theorem 5.2.1 (Division Algorithm) Let a and b be integers with b > 1. Then there
is a unique quotient q and remainder r satisfying (5.2.1).

5.3 Euclidean Algorithm

Now start with any integers ag and a; with a; > 1. Apply the division algorithm to
obtain a quotient g; and remainder a; satisfying

ap = aiq; + az, 0<ap <ajy.

If a, = 0, stop. Otherwise, apply the division algorithm again with a; and a; to
obtain a quotient g, and remainder a3 satisfying

ay = aq + as, 0<asz<a.

If a3 = 0, stop. Otherwise, apply the division algorithm again with a, and a3 to
obtain a quotient g3 and remainder a4 satisfying

ap = azqs + aa, 0<ay4 <as.

Continuing in this way, we obtain a finite decreasing sequence a; > a, > a3 > a4 >
. of positive integers. We end up with

ap=aiq +az
a) = axqp +az

az = azqs + ay (53.1)

ap-2 = pn-19n-1 + an

An-1 = Anpqn + 0,

after n steps. This is the euclidean algorithm.

For example, if ¢y = 33 and @; = 10, then a = 3 and a3 = 1, so
the sequence [33,10,3,1] stops in 3 steps. If ap = 98765423232121332 and
ay = 123453678912, the sequence

[98765423232121332, 123453678912, 11028943092, 2135304900,
352418592, 20793348, 19725024, 1068324, 495192, 77940,
27552, 22836, 4716, 3972, 744, 252, 240, 12]

stops in 17 steps.
The code returning these results is
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0>> def euclid(a,b):

1>> r = a%b

1>> if r ==

2>> return [(a,b)]

1>> else:

2>> return [a] + euclid(b,r)
54 GCD

If a and b are integers, a common divisor is an integer d that divides both a and
b. For example, 3 is a common divisor of 6 and —9, but is not a common divisor
of 6 and 10. There may be several common divisors. Among the positive common
divisors, there is a greatest. This is the greatest common divisor or gcd(a, b).

For example, gcd(a,0) = a and ged(0,b) = b. If d = gcd(a, b), then —d =
gcd(a, b). To make gcd(a, b) unique, we always take the positive greatest common
divisor as the gcd of a and b. Then

gcd(+a, +b) = ged(a, b).

Theorem 5.4.1 If ag and a| are integers with a; > 1 and the euclidean algorithm
stops after n steps, then a,, = gcd(ag, ay).

Proof Look at the sequence of equations in the euclidean algorithm. If d is a common
divisor of agp and a1, then from the first equation d divides a,, hence is a common
divisor of a; and a;. Then from the second equation, d is a common divisor of a;
and as. Proceeding forward in this manner, we conclude d divides a,,.

On the other hand, from the last equation, a,, divides a,_;. From the next-to-last
equation, a,, divides a,_; and a,_,. Proceeding backward, we conclude a,, divides
ap and ayp, hence a,, is a common divisor of ag and a;. O

For example, from above,
gcd(33,10) =1,

and
2cd(98765423232121332, 123453678912) = 12.

Based on this Theorem, we have

0>> def gcd(a,b):
1>> return euclid(a,b)[-1]

We say an integer g is a linear combination of integers a and b if there are integers
s and ¢ satisfying
sa+th=g. 54.1)
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For example, 1 is a linear combination of 5 and 11 since 1 = 45-44 = 10-5+(—4)-11,
and -3 is a linear combination of 12 and —21 since —=3 = =24 + 21 = (=2) - 12 +
(=1)-(=21).

An important consequence is
Theorem 5.4.2 ¢ = gcd(a, b) is a linear combination of a and b.

Proof 1If b = 0, this is clear. If b > 1, look at the equations (5.3.1) with a = ag
and b = a;. Since a, = ap — q1a1, ay is a linear combination of a and b. Since
az = ay — quay, az is a linear combination of a and b. Continuing in this manner,
g = ay is a linear combination of a and b. O

A consequence of this is
Theorem 5.4.3 If a prime p divides ab, then p divides a or p divides b.

Proof Either p divides a or not. If p does not divide a, then gcd(a, p) = 1,s0 lisa
linear combination of a and p: there are integers s and ¢ satisfying

sa+tp=1.

Muliplying by b, we get
s(ab) + tpb = b.

Now p divides ab, so p divides the left side, hence p divides the right side, which is
b. m]

If p is prime and «a is any integer, there are two possibilities. Either p divides
a, or p does not divide a. Since p only has divisors 1 and p, in the former case,
gcd(a, p) = p, while in the latter case, gcd(a, p) = 1.

For later, it is important to compute (s, ¢) is (5.4.1) in terms of a, b, and g. For
this, with notation as in the Euclidean algorithm, apply Theorem 5.4.2 to (ag, a1),
(a1, a),. . . to get the extended euclidean algorithm

ap =aiq +az soap +fa; = g
ay = axqx +as sipay +hax =g
az = asqs +as S2ax +haz =g
ap-2 = dp-14n-1 t+ an Sp—20p—2 +Ih-20n-1 =&
an-1 = dnqn + 0, Sp—1Qp-1 + th-1an = &
At each stage, the choices of coefficients s, 7o, s1, f1, ... are not unique. We

seek a consistent choice of coefficients across these equations. Substituting the
first equation the left column into the first equation of the right column yields
so(aiq1 + ap) + topay = g, or (soq1 + to)ay + soaz = g. This suggests we insist

(Soq1 + to, s0) = (s1,t1)  or (o, to) = (t1, 51 — t1G1)-
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Repeating this with the second equations, then third, and so on, we get

(80, 10) = (1,51 — t1q1)
(s1,11) = (t2, 2 — aq2)
(s2,12) = (3,53 — 13q3) (5.4.2)

(sn—l’ tn—l) = (O’ 1)s

where the last equation follows from a, = g. This yields a recursive procedure for
computing (so, #p) (Exercise 5.5).

5.5 Fundamental Theorem of Arithmetic

Recall an integer a is composite if a = bc for some integers b and ¢ not equal to 1.
For example, 12 is composite in two different ways, since 12 =2-6 and 12 =3 - 4.
Since 6 =2 -3 and 4 = 2 - 2 are composite, we may write

12=2-2.-3=2-3-2=3-2.2

as a product of primes. Thus, apart from the order, and apart from signs +1, 12 can
be written as a product of primes in only one way.
The fact that this is true in general is the

Theorem 5.5.1 (Fundamental Theorem of Arithmetic) Every positive integer n >
1 is a product of positive primes,

n=pip2..., (5.5.1)
in a unique manner, except for a change in order.

(5.5.1) is the prime factorization of n.

Proof Suppose there is a positive integer greater than 1 which cannot be written as
a product of primes, and let n be the least such positive integer (Theorem 4.7.1).
Then n > 1 and n cannot be prime, otherwise 7 is trivially a product of primes. Thus
n = bcforsome 1 < b <nand 1 < ¢ < n. Since n was chosen to be the least
positive integer not having a prime factorization, both b and ¢ must be expressible as
products of primes. Since n = bc, this implies »n is so expressible, contradicting the
choice of n. Thus there is no such n. In other words, every positive integer n greater
than 1 is a product of primes.

Now we establish uniqueness. Suppose an integer is expressed as a product of
primes in two different ways,

n=pip2:---=4q1g2....
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Since p; divides the left side, p; divides the right side. By Theorem 5.4.3, p; must
divide one of the ¢’s. By re-ordering the ¢’s, we may assume this ¢q is q. By Exercise
5.7, p1 = qi. By the cancellation property (4.5.6), cancelling p; = ¢; from both
sides,

pp3 = Qg3

Repeating the same logic with p,, we may cancel p, = ¢ to obtain

p3pa---=43q3.. ..

Repeating again, we may keep cancelling until the there are no primes remaining on
the left side. But when this happens, there can be no more primes remaining on the
right side. Hence the p’s are equal to the ¢’s, except possibly for the order. O

An immediate consequence is

Theorem 5.5.2 If py, pa, ..., p, are distinct primes dividing a, then the product
P1p2 - . . pn divides a.

Integers a and b are relatively prime if they have no common divisor, gcd(a, b) = 1.
Let a be a positive integer. How many integers in

{0,1,2,...,n—1}

are relatively prime to a? By definition, the number of such integers is ¢(a). This is
the Euler ¢-function.

For example, 1, 5,7, and 11 are relatively prime to 12, so ¢(12) = 4. Also, if p is
prime, any positive integer less than p is relatively prime to p, so ¢(p) = p — 1.

We use the inclusion-exclusion principle (3.3.5) to find a formula for ¢(a).

Let a be a positive integer, and let p be a prime dividing a. For example, if
a=12=2-2-3,thenp =2or p = 3. Let A be the set of integers b, 0 < b < a, that
are divisible by p. Then A consists of the multiples Op, 1p, 2p, ..., of p less than a,
so |A] = a/p.

If p and ¢q are distinct primes dividing a, then pq divides a. If A is the set of
integers b, 0 < b < a, that are divisible by pg, then, by the same reasoning as above,
|Al = a/pq.

Now let p, g, r, ... be the distinct prime factors of a, and let

Ap ={b:0 < b < aand bis amultiple of p}.
By what we just discussed, |A,| = a/p, |Ap, NAqy| = a/pq, |A, NA;NA,| =a/pqr,
etc. Hence by the inclusion-exclusion principle,
a

a a
A,UA,UA U... =2 Y2,y 2
b ZP qu par

Now A, UA, UA, U... is the set of integers b, 0 < b < a, that have a common
factor with a, so its complement (A, UA; UA, U...)¢in{0,1,2,...,a— 1} are the
integers b, 0 < b < a, that are relatively prime to a, and
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[(ApUA;UA U..)|=a-|A,UA,UA U...|
a a a
Sy g g (552)
1 1 1
=al1-)" = — -y —— ..
a( ZP+ZPCI par )

But, recalling the elementary symmetric polynomials and (2.5.5), we have (insert
= 1/p,l‘2 = 1/q, oY)

1 a a a
1-—|=1- -+ — - —+....
0-5)--25 2525
Hence we have shown
Theorem 5.5.3 The number of integers b, 0 < b < a, relatively prime to a is

1
aw=af]@—;y

p

where the product is over distinct prime factors of a.

For example,

¢@w=pq@—1)@—1)=@—nm—1x
p q

and a = 12 implies p = 2 and g = 3, so

1 1
$(12) = 12(1 - E) (1 - §) =4.

Exercises

Exercise 5.1 Use (4.7.1) to show 2" — 1 is composite when 7 is composite. Conclude
primes of the form 2”7 — 1 must have n prime. Such primes are Mersenne primes..

Exercise 5.2 Use (4.7.1) to show a" + 1 is composite when » is odd. Conclude if
2" 4+ 1 is prime, then n = 2X is a power of two. Such primes are Fermat primes..

Exercise 5.3 Write a function div(a,b) that returns ¢ and r.

Exercise 5.4 Write a function gcd(a,b) that returns gcd(a, b) without using
euclid(a,b).

Exercise 5.5 Write a function exteuclid(a,b) that returns (s,t) satisfying
(5.4.1), in a manner similar to gcd(a,b).
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Exercise 5.6 If ais alist, p = a.pop(n) removes a[n] from a and assigns it to p.
a.remove(b) removes b from a. The sieve of Eratosthenes is

0>> def primes(n):

1>> sieve = list(range(2,n))
1>> sifted = [ ]

1>> while sieve:

2>> p = sieve.pop(®)

2>> sifted.append(p)

2>> for n in sieve:

3>> if n%p == 0:

4>> sieve.remove(n)
1>> return sifted

Explain why this code returns all primes less than 7.
Exercise 5.7 If p and ¢ are primes and p divides ¢, then p = gq.

Exercise 5.8 If p divides a product aja; .. .a,, then p divides at least one of the
factors a; (use induction on n and Theorem 5.4.3).

Exercise 5.9 If p and ¢ are distinct primes both dividing an integer a, then the
product pq divides a.

Exercise 5.10 If the fundamental theorem is true for n, then it’s true for —n.

Exercise 5.11 If a and b are relatively prime, then ¢(ab) = ¢(a)p(b). Conclude
¢(pg) = (p— (g —1).

Exercise 5.12 Write a function eulerphi (n) that returns ¢(n).



Chapter 6
Modular Integers Z,

Recall the axioms for the integers Z (Chapter 4). In this Chapter we study a different
kind of arithmetic, modular arithmetic. Here the numbers satisfy the same axioms
except for positivity (4.5.2), which is replaced by its negation.

To explain this, recall positivity states zero is neither positive nor negative, where
(§4.5) the positive integers are by definition the sums of ones, 1 + 1 + - + 1. The
negation of this is zero is either positive or negative. Since —0 = 0, this is the same
as saying zero is both positive and negative.

Now 0 is positive means 0 is a sum of ones,

O=1+14+---+1.

Modular arithmetic depends on the number of ones that add up to zero. If the least
number of ones that add up to zero is n > 1, we call n the modulus, and we obtain
the modular integers Z,,. Therefore the properties that characterize Z,, are

1. additive commutativity (4.1.1)

2. additive associativity (4.1.2)
3. existence of zero (4.1.3)
4. existence of negatives (4.2.1)
5. multiplicative commutativity (4.3.1)
6. multiplicative associativity (4.3.2)
7. existence of one (4.3.3)
8. distributivity (4.4.1)
9. minimality (4.5.1)
10. zero is the sum of n ones, and not fewer

87
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addition and multiplication operations satisfying these axioms.

Our grade school intuition about integers assumes zero is not positive. Since
positivity of zero is completely at odds with our grade school intuition, we have to
adjust our expectations when studying modular integers, where things behave very
differently.

By negating a single axiom, one is led to other kinds of arithmetics that are
self-consistent and useful.!

In Z;, 1 = 0, and the set Z; consists of one element. We are only interested in
situations where 1 # 0, so we only look at Z,,, n > 2.

In this chapter, we will see, for each n > 2, Z,, has its own distinct arithmetic that
is self-consistent and useful.

In §A.2, we show there is, for each n > 1, essentially one set Z,, equipped with

6.1 Addition, Multiplication

Let’s take modulus n = 5 for example. Then Zs is the set of numbers satisfying
axioms 1 through 9 together with 5 =1+ 1+ 1+ 1+ 1 = 0, the sum of five ones
equals zero. So the set Zs includes these six numbers 0, 1,2 =1+ 1,3 =2 + 1,
4=3+1,and5 =4+ 1. But 5 = 0, because 5 is the sum of five ones, so these are
five numbers, not six. In fact, the only numbers in Zs are 0, 1, 2, 3, 4,

Zs ={0,1,2,3,4}.

Indeed, if we add seven ones, we end up with 2 as an answer, since five ones add up
to zero,
1+414+1+1+1+1+1=7=5+2=0+2=2.

Therefore 3 + 4 = 2. Hence addition in Zs is determined by the following rule: If a
and b are in Zs, then a + b is obtained by adding them the usual way (in Z), then
taking the remainder after division by 5.

Be careful, these are not integers, they are numbers of a different sort, since 5 = 0.
To emphasize this difference, these numbers are called modular integers.

If a is an integer,? the residue of a mod n is the remainder after division by .
With the above rule, we can build the addition table for Zs (Figure 6.1).

There are only five numbers in Zs. It’s not that there is no 5 in Zs. There is a 5 in
Zs, it’s the sum of five ones, and it equals 0. It’s not that there is no —1 in Zs. There
isa —1 in Zs, it’s the sum of four ones, since 4 + 1 = 0, so —1 = 4. So we could have
written just as well

Zs ={5,6,7,8,9},

! This situation is entirely analogous to that of Euclid’s axioms for geometry. There, a single axiom,
the parallel postulate, is singled out. By negating this axiom, one is led to other kinds of geometries
that are self-consistent and useful.

2 Integer is an element of Z, and modular integer is an element of Z, or Z3 or Z, . . .
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+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Fig. 6.1 Addition in Zs.

or, for that matter,
Zs ={511,2,-2,-1},

as long as we enforce —Js: 5 = 0. Practically, however, we always write the residues
7Z,=1{0,12,...,n—1}

as that is simplest. It helps to visualize the numbers in Zs as five points equally
spaced on a circle, like the hours on a clock face. Then addition 3 + 4 corresponds
to going seven steps around the circle, which gets one back to 2.

Turning to multiplication, in Zs, 2-3 = 6, but 6 = 1, so 2 - 3 = 1. Similarly,
4 -4 =16 = 1. Hence multiplication in Zs is determined by the following rule: If a
and b are in Zs, then ab is obtained by multiplying them the usual way (in Z), then
taking the remainder (ab)%S5 after division by 5. Here is the resulting multiplication
table for Zs (Figure 6.2).

X 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Fig. 6.2 Multiplication in Zs.

According to D, each a in Zs has a negative —a, characterized by a + (—-a) = 0.
So-0=0,since0+0=0,-1=4,sincel1 +4=0,-2=3,since2+3=0,-3=2
since 3+2 = 0,and —4 = 1, since 4+ 1 = 0. Here is the negative table for Zs (Figure
6.3).

Turning now to positivity, recall Z* was defined as the set of sums of ones. But in
Zs, every number is positive. By the negative table, every number is also negative.
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a —a
0 0
1 4
2 3
3 2
4 1

Fig. 6.3 Negatives in Zs.

Thus Zs = Z;’ = Z; . Therefore we have a < 0 < a for any a in Zs, so we cannot
compare numbers in Zs: it is meaningless to say a < b.

Nevertheless, induction is still valid in Z,. It’s not invalid, it’s just not useful,
because Z, is a finite set. But anything that depended on positivity breaks down. For
example, in Z,, Theorem 4.7.1 is not valid, and Theorem 4.6.2 is not valid.

To explain this, let a be in Z,,. As before in Z, the reciprocal of a modular integer
a is a modular integer b in Z,, satisfying ab = 1 in Z,. We denote the reciprocal of
a as 1/a. For example, the reciprocal of 3 is 2 in Zs, since 3-2 = 6 = 1 mod 5.
We write 1/3 = 2, and we say 3 is a unit in Zs. Here is the reciprocal table for Zs
(Figure 6.4).

a 1/a
0 None
1 1

2 3

3 2

4 4

Fig. 6.4 Reciprocals in Zs.

This follows from the multiplication table. As we see, every nonzero modular
integer has a reciprocal, and therefore is a unit in Zs. So the numbers in Zs behave
just like fractions, the rational numbers Q: one can compute a/b for any a in Zs and
any nonzero b in Zs.

Since every nonzero number in Zs is a unit, there are no primes in Zs, and there is
no fundamental theorem of arithmetic as in Z. We shall see, however, there is plenty
of other stuff going on.

Division a/b is given by multiplication with the reciprocal, a/b = a(1/b). For
example, 2/3 = 2(1/3) = 2 -2 = 4 in Zs. Here is the division table for Zs (Figure
6.5).

Here a is along the top row, and b is along the left column.
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= 0 1 2 3 4
1 0 1 2 3 4
2 0 3 1 4 2
3 0 2 4 1 3
4 0 4 3 2 1

Fig. 6.5 Division in Zs.

Note our arithmetic examples here were in Zs. If the modulus is 6, in Zg, things
are different: 2 - 3 = 6 = 0, since in Z¢ zero is the sum of 6 ones. Thus each Z,,,
n=1,273,...,is not only different from Z, but also different from each other.

6.2 Congruence and Equality

Our first concern is comparing numbers in Z with numbers in Z,. For example,
6 # 11 in Z but 6 = 11 in Zs. Remember 6 means the sum of six ones, both in Z
and in Zs. The only difference is that in Zs, 5 = 0, so 6 = 1. Similarly, 11 = 1 in Zs,
since 11 =2-5+ 1. Hence 6 = 11 in Zs. What is the general rule?

Z Z,
Fig. 6.6 The function a — a,.

Let a be an integer in Z. Then a is the sum of a ones. We use this to interpret a as
a modular integer as follows. Write a as a sum of ones, or as the negative of a sum
of ones, then interpret the addition in Z,,. This then yields a modular integer in Z,,
which we call a,,, or a when the context is clear. To be more explicit, we should write
one in Z as 1, and one in Z,, as 1,. Then the function (Figure 6.6) sends the integer
a to the modular integer a,, = a - 1,,, wherea - 1,is 1,, + 1, + --- + 1,, summed a
times. But we won’t do this, we’ll continue to write 1 for one in Z and one in Zs and
one in Z7, etc.

Since modular integers can be represented by residues, a,, can be interpreted also
as a residue in

{0,1,2,...,n—1}.

Given integers a and b, we say a is congruent to b mod n if n divides a — b. We
write
a=b mod n.
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For example 5 divides 11 — 6, so 11 is congruent to 6 mod 5, 11 = 6 mod 5.
Similarly =23 — 47 = —70 and —70 = —14 - 5, so =23 = 47 mod 5. We show that
congruence in Z corresponds to equality in Z,,.

Theorem 6.2.1 Let a and b be integers. Thena = b mod ninZ ifand only ifa = b
inZ,.

Proof Let r be the remainder after dividing a by n, and let s be the remainder after
dividing b by n. Then a = b in Z,, if and only if r = s, which happens if and only
if there is no remainder after dividing a — b by n. But a — b is divisible by » if and
only if a = b mod n. O

As a consequence,
Theorem 6.2.2 Fix n > 1. Then Z,, is finite and in fact has n elements.

Theorem 6.2.3 For a, b, ¢, d in Z, a

= b modn and ¢ = d mod n implies
a+c=b+d modnandac =bd mod n.

Proof a = b mod n is the same as a — b is divisible by n, and ¢ = mod n is the
same as ¢ — d is divisible by n. Thus

(a-b)+(c-d)y=(a+c)—(b+d)
is divisible by n, or a + ¢ = b+ d mod n. Since
ac — bd = (a - b)c + b(c — d),
we also have ac — bd is divisible by n, hence ac = bd mod n. O
This shows congruence behaves like equality. For example, if a = b mod n, then
a’-5a*+17=b"-5b*+17 mod n.

Above we called
{0,1,2,...,n—1}

the residues mod n. These are the same as range (0,n). We call
{1,2,...,n—-1}

the nonzero residues. These are the same as range(1,n).
The residue of —1 mod n is n — 1. This is consistent with backward indexing for
lists, where a[-1] is the last item in the 1ist a.
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6.3 Classes

Even after the preceding sections, the reader may still have the nagging feeling: But
what are modular integers? Are they integers or what? How can one have 4 in Z and
4 1in Zs and 4 in Zg as three different mathematical objects?

In fact, we never explicitly said what the sets Z, Zs, Zg were, nor can we. All we
can do is learn about Z, Zs, Z¢ through the axioms characterizing them.

To understand this better, we appeal to Python. Why? Because the situation there
is completely analogous. We don’t really know what an int or an object is. All we
can do is access an int or object through its methods.

In Python, the integer 23 corresponds to the object 23 whose type is int. What
Python type corresponds to a modular integer? Since there is no such built-in3
type, we now build one ourselves.

A user-defined type is a class. We call the class we build modint. Recall
a type is a factory that produces objects (§1.1). To specify a modular integer a
mod n, we need the modulus 7, a positive integer, and the value a, an integer. So
the function modint has two arguments a and n, both ints, and returns an object
modint(a,n). Thus

>>> m = modint(3,5)

assigns an object of type modint to the variable a. Then a points to an object of
type modint,

>>>  type(m)
__main__.modint

An instance of the class t is an object of type t. So 23 is an instance of int,
andmodint (3, 5) is an instance of modint. The assignmenta = 23 is a creation of
an instance, an instantiation of type int,andm = modint (3, 5) is an instantiation
of type modint.

A class, while effectively a function, has different syntax,

0>> class modint:

1>> def __init__(self,value,modulus):
2>> self.modulus = modulus
2>> self.value = value

This says modint is a class, an object factory, that creates objects with two attributes
modulus and value. Given this code, and the assignment above, attributes may be
recovered using dot notation,

>>> m.modulus
5

>>> m.value

3

3 There are built-in types for modular integers, but we won’t use them, since the point here is to
build our own from scratch.
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Inany class, the function__init__ executes upon instantiation of the class.
Functions appearing inside a class are called methods. Here themethod __init__
has only one job to do, which is to specify the arguments and how to retrieve them
using dot notation. The zeroth argument of __init__ always refers to the instance
to-be-created, that’s why it makes sense, and is traditional, to call it self.

Any function can be inserted into the code body of a class. Then it is referred
to as amethod. If the code

>>> def example(self,a,b,c):
>>>

is inserted into the class modint, the method example is accessed via
>>> m.example(a,b,c)

Functions whose names start and end with double underscores, like __init__,
are special methods built into Python. For example, to print the modular integer as
“a mod n”, we use the special method __str__,

1>> def __str__(self):
2>> v = self.value % modulus
2>> return str(v) + > mod ’ + str(modulus)

When this code is added to the class modint, we have

>>> m = modint(7,5)
>>>  print(m)
2 mod 5

Step by step, the value 7 is reduced mod 5 to obtain the residue 2, then the residue
and the modulus 5 are turned into strings and concatenated with the string > mod ’.
Note for this to work, we have to use the print function.

We know to test for equality of ints by using ==. How do we test for equality of
modint objects? To continue the usage of == for modint, add the the following
code to the class modint,

1>> def error(self,other):

2>> if self.modulus != other.modulus:
3>> raise ValueError(’The moduli are different.’)
>>>

1>> def __eq__(self,other):

2>> error(self,other)

2>> a = self.value

2>> b = other.value

2>> return a == b

Then

>>> m = modint(734,52)

>>> n = modint(333,500)

>>> m == n
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Error: The moduli are different.
>>> m = modint(734,500)

>>> m==n

False

>>> m = modint(833,500)
>>> m==n

True

>>> m !=n

False

To summarize, we’ve built a type modint whose objects are modular integers.
More exactly, the function that sends the integer @ in Z to the modular integer a,
in Z,,, discussed in the previous section, is precisely the same as the function that
inputs the int a and returns modint(a,n).

To complete the picture, we describe how to add and multiply modints. Just add
the following special methods to modint,

1>> def __add__(self,other):

2>> error(self,other)

2>> mod = self.modulus

2>> sum = self.value + other.value
>>> return modint(sum % mod,mod)
>>>

1>> def __mul__(self,other):

2>> error(self,other)

2>> mod = self.modulus

2>> prod = self.value * other.value
2>> return modint(prod % mod,mod)
Then

>>> m = modint(734,500)

>>> n = modint(323,500)

>>> print(m + n)

57 mod 500

>>> print(m*n)

82 mod 500

As mentioned in §1.3, the ability to customize operators such as + and * to work
with non-int objects is an example of operator overloading.

To compute a power a® mod n, where e may be a large integer, the simplest
method is to multiply a by itself e times, each time reducing the result mod z. This
takes 2n multiplications/divisions. A much faster method is to write e in binary and
take successive squarings of @ mod n. For example, with e = 19 = 2* + 2 + 1,
e//2=9=23+1and e%2 = 1, hence

4 4 3
a® = a = @ = P g = ()P g = (D) 0
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Similarly, with e = 18 =2* +2,¢//2 =9 = 2% + 1 and %2 = 0, hence also
a = a18 — a24+2 — (a2)23+l ca= (aZ)e//Zae%Z.

This procedure leads to a special method __pow__(self, e) yielding (Exercise 6.8)

>>> m = modint(7,11)
>>>  m**23
2

This agrees with
73 = 27368747340080916343 =2 mod 11.

This takes roughly log(e) multiplications/divisions, because each time we divide e by
2, we get one multiplication and division. To reduce the number of multiplications
even further, the exponent e is often taken in RSA cryptosystems (§6.8) to equal
22 4 1 for some k (Exercise 5.2).

reciprocal (self) and legendre(self) are other methods added to the class
modint in the exercises.

6.4 Negatives and Reciprocals

Going back to negatives, the axioms guarantee that every a in Z,, has a negative —a.
Is there a in Z,, satisfying a = —a? a = 0 works, but is there any other a?

Theorem 6.4.1 [fnisodd, a = —ainZ, onlyifa =0inZ,. Ifnis even, a = —a in
Z, whena=n/2ora=0inZ,.

Proof Given0 < a <n,letb=n—-a. Thena+ b =n,sob = —ainZ,. Hence
a = —a happens when a = n — a, which in turn happens when 2a = n. If n is even,
this happens for a = 0 or a = n/2. If n is odd, this happens for a = 0. O

Letus go back to reciprocals, but this time with modulus 6,in Z¢ = {0, 1,2, 3,4, 5}.
What is the reciprocal of 3 in Zg? Checking0%3 =0,1%3 =3,2%x3=0,3%3 =3,
4%3 =0,5%3 = 3, none equal 1 in Zg, so there is no reciprocal of 3 in Zg (remember
this is mod 6 now). In fact the only modular integer in Z¢ that is a unit* is 5, since
5-5=1in ZG.

Given n and a, when does a have a reciprocal in Z,? Of course a can’t be zero,
because (as we saw in Chapter 4), anything times zero is zero.

Theorem 6.4.2 A nonzero a has a reciprocal in Z,, if and only if gcd(a, n) = 1.

Proof 1f gcd(a, n) = 1, by Theorem 5.4.2, there are s and ¢ satisfying

41i.e. has a reciprocal
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sa+tn=1.

Then sa — 1 is divisible by n, so sa = 1 mod n, so sa = 1 in Z,,. Conversely, if a
has a reciprocal s in Z,,, then as = 1 in Z,,, which implies as = 1 mod n, which
implies as — 1 is divisible by n, or there is a t with as — 1 = —tn. If g = ged(a, n),
then g is a common divisor of @ and n, so g divides as + tn, whichis 1. Thus g = 1.0

For example, gcd(2,6) = 2 = ged(4,6) and ged(3,6) = 3, so 2, 3, and 4 are not
units in Zg. But gcd(1,6) = 1 and gcd(5,6) = 1, s0 1 and 5 = —1 are units in Zg.

How does one compute 1/a given a and n, when gcd(a,n) = 1 The simplest
approach is to try all nonzero residues until one fits.

0>> def reciprocal(a,n):

1>> for x in range(l,n):
2>> if (a*x)%n ==

3>> return x

1>> return ’None’

This takes around #» multiplications/divisions. A faster approach is to use the extended
Euclidean algorithm (5.4.2) to compute s and # satisfying

sa+tn=1.

This takes around log(n) multiplications/divisions. Then sa = 1 mod n, or s is the
reciprocal of a mod n.
An important special case is

Theorem 6.4.3 Let p be a prime. Then every nonzero modular integer in Z, has
a reciprocal. Conversely, if every nonzero modular integer in Z,, has a reciprocal,
then n is prime.

Proof If a # 0 in Z,, then p does not divide a in Z, so ged(a, p) = 1, so a has a
reciprocal in Z,,. Now suppose every nonzero modular integer in Z,, has a reciprocal.
If n is composite, n = ab, with a # 0, then ab = 0 in Z,, so b = (1/a)ab = 0,
implying n = ab = a0 = 0, a contradiction to n > 1. Hence # is prime. O

As a consequence, we can cancel in Z,,
Theorem 6.4.4 Let p be a prime. If a # 0 and ab = ac in Z,, then b = c in Zy,.

Proof We know ab = ac. let 1/a be the reciprocal of a. Then
b=1b=((1/a)a)b = (1/a)(ab) = (1/a)(ac) = ((1/a)a)c = 1c = c.

When p is not prime, this is false, for example 2 - 3 = 0 in Zs.
When p = 2, a = 1 is the only solution of ¢ = 1/a. When p > 2, there are two
solutions.

Theorem 6.4.5 Let p be an odd prime. Then a = 1/a in Z,, if and only if a = +1 in
Z,. For all other a inZ,, a # 1/a.
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Proof x = 1/x in Z, if and only if x> = 1 in Z,. Clearly x = 1 satisfies this
equation. If x # 1 in Z, satisfies this equation, then (difference of two squares)

x-Dx+1)=x>-1=0.

But x — 1 # 0 and the modulus is prime, so x — 1 has a reciprocal. Multiplying
this last equation by the reciprocal of x — 1 allows us to cancel x — 1, resulting in
x+1=0,orx=-1inZ,. O

Cancellation in Z,, can be used for

Theorem 6.4.6 Let p be prime and let f(x) be a polynomial of degree n > 1. Then
f(x)=0 mod p
has at most n solutions.

Proof By induction on the the degree n. If n = 1, f(x) = ax + b with a # 0, so the
equation is ax + b = 0. Since this has the unique solution x = —b/a (1/a exists since
p is prime), the base step is proved. Now assume the result is true for any polynomial
of degree n, and let f(x) be a polynomial of degree n+ 1. If a is a solution of f(x) =0
mod p, then f(a) =0 mod p. By Exercise 2.7, there is a polynomial g(x) satisfying

J(x) = f(x) = f(a) = (x — a)g(x).

Since f(x) has degree n + 1, g(x) has degree n. If b is another solution of f(x) =0
mod p, then f(b) = 0 mod p, so 0 = f(b) = (b — a)g(b) mod p. By cancelling
b — a, b is a solution of g(x) = 0 mod p. Since g(x) = 0 mod p has at most n
solutions, it follows that f(x) = 0 mod p has at most n+ 1 solutions. This establishes
the inductive step, and we are done. O

Since x = —x is the same as 2x = 0, Theorem 6.4.1 deals with the equation
2x =0 mod n. When n is even, this has two solutions. When # is odd, this has one
solution.

Since x = 1/x is the same as x*> = 1, Theorem 6.4.5 deals with the equation
x> =1 mod n. Here there are two solutions for n prime. If 7 is not prime, this may
not be true. For example, x + 1 and x = +4 are solutions of x> = 1 mod 15.

Given a and b in Z,, x = a/b is the solution of bx = a mod n. We saw above
reciprocals for general n may not exist, so in general a/b may not exist in Z,,. In
Exercise 6.12, you are asked to show a/b exists in Z,, if and only if gcd(b, n) divides
a.

6.5 Wilson’s Theorem

Let p be an odd prime. The nonzero residues mod p are the integers
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L2,...,p—1.

Each nonzero residue a, other than 1 and p — 1, has a distinct reciprocal a* = 1/a
(Theorem 6.4.5). Thus if we pair off each nonzero residue a with its reciprocal
a*, we obtain (p — 1)/2 pairs (a, a*), each satisfying aa® = 1 mod p. Multiplying

1-2----- (p—1) = (p— 1! in pairs, all the factors cancel, except for the first, which
is 1, and the last, which is p — 1. Hence
p-D'=p-1=-1 mod p.

We have shown

Theorem 6.5.1 (Wilson’s Theorem) Let p be an odd prime. Then
(p—-1!'=-1 mod p.

Let’s go back to the binomial coefficients, given by (2.4.3) and Pascal’s triangle
(Figure 2.1). Starting with n = 2, take the n-th row and reduce it mod n. So [1,2,1]
reduced mod 2 becomes [1,0,1], [1,3, 3, 1] reduced mod 3 becomes [1,0,0,1],
[1,4,6,4,1] reduced mod 4 becomes [1,0,2,0,1], and Pascal’s triangle reduces
to Figure 6.7.

You’ll notice that the rows corresponding to n prime are zeroed out after reducing
mod n, except for either end. But the residue of an integer is 0 mod # if and only if
a is divisible by n, so this follows from

Theorem 6.5.2 For p prime, (i) is divisibleby pfor 1 <k <p-1.

Proof By (2.4.3), foreach 1 < k < p—1, p divides (Z) - k!. But p does not divide
k!, aslongas 1 <k < p — 1. By Theorem 5.4.3, p divides (7). o

6.6 Fermat’s Little Theorem

Continuing as in the previous section, let p be an odd prime.
Let a be any nonzero residue. Then by Theorem 6.4.4, ak = am in Z,, implies
k = m. Thus the numbers

a-lLa-2,...,a-(p-1)

are p — 1 distinct numbers mod p, so they are the nonzero residues re-arranged in a
different order. Hence, if we multiply them, we get

(a-1)-(@-2)----(a-(p-1)=(p-1! mod p.

But we can pull out all the a’s from the left side, and get p — 1 of them, so

@ ' p-D'=(p-1! mod p.
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n=0: 1

n=1: 1 1

n=2 1 0 1

n=3 1 0 0 1

n=4 1 0 2 0 1

n=>5 1 0 0 0 0 1

n==6 1 0 3 2 3 0 1

n="7 1 0 0 0 0 0 0 1
n=2_8 1 0 4 0 6 0 4 0 1
n=9 1 0 0 3 0 0 3 0 0 1

Fig. 6.7 The reduced Pascal’s triangle.

Cancelling (p — 1)!, we conclude

Theorem 6.6.1 (Fermat’s Little Theorem) Let p be an odd prime. If a is any integer
not divisible by p, then
a’'=1 mod p.

What if the modulus 7 is not prime? The same argument works, but we multiply
only over integers 0 < b < n that are relatively prime to n. Since there are ¢(n) such
integers, we obtain

Theorem 6.6.2 (Euler’s Theorem) Let n > 2. If a is any integer relatively prime to
n, then
a®™ =1 mod n.

6.7 Existence of V-1

Let p be an odd prime. In §6.4, we solved the equations 2x = 0 mod p and x? = 1
mod p. What other equations

f(x)=0 mod p

can we solve? By Theorem 6.4.6, we know this equation has at most n solutions,
where n is the degree of the polynomial f(x).
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In this section, we solve
x*+1=0 mod p. (6.7.1)

For example, for p = 5, x = 2 is a solution of (6.7.1), since 22=4=-1 mod 5.
Another solution is x = 3 = =2, Since (-2)*> = 4 = —1 mod 5. Thus for p = 5,
(6.7.1) has two solutions, +2.

For p = 7, the squares x” of the nonzero residues x are 1! = 1,2% = 4, 3> = 2,
4% = 2,52 = 4, 6% = 1. Since none of these equals —1 mod 7, (6.7.1) has no
solutions when p = 7.

So, depending on p, (6.7.1) sometimes has solutions and sometimes does not. A
solution x of (6.7.1) is V=1, a square root of =1 mod p, since x2 equals —1 mod p.

Since (—1)> = 1, when (6.7.1) has a solution, it in fact has two solutions, since
a # —a mod p when p is odd, except for a = =1 (Theorem 6.4.1).

By checking all residues, the function yes_or_no(p) easily tells whether or not
(6.7.1) has solutions mod p,

0>> def yes_or_no(p):

1>> for x in range(l,p):
2>> if (x**2+1) % p == O:
3>> return x

1>> return ’'no’

yielding Figure 6.8.

X p X p X p X
no 19 no 43 no 71 no
2 23 no 47 no 73 27
no 29 12 53 23 79 no
11 no 31 no 59 no 83 no
13 5 37 6 61 11 89 34
17 4 41 9 67 no 97 22

AT RV ROCRE N

Fig. 6.8 Existence of V-1 mod p.

Historically, attempting to solve x> = —1 in standard arithmetic led to the dis-
covery of complex numbers. Because of this, figuring out the pattern in Figure 6.8,
which amounts to solving (6.7.1) for all p prime, is important.

To figure out the pattern, we repeat the idea in the proof of Wilson’s Theorem.
There, we paired each nonzero residue a with its reciprocal a* = 1/a. Then a
equalled its partner a* if and only if @ was a solution of the equation x = x* = 1/x
mod p, or x> =1 mod p.
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Here, in the present proof, we pair each nonzero residue a with its negative
reciprocal a* = —1/a. Then a equals its partner ¢* if and only if a is a solution of
the equation x = x* = —1/x mod p, or x> = —1 mod p. There are two cases.

The first case is when there are no solutions of (6.7.1) mod p. Then none of the

p — 1 nonzero residues a are equal to their partner a*, so when we multiply
1-2-----(p=D=@p-D, (6.7.2)

we obtain (p — 1)/2 pairs aa”, each pair reducing to —1. By Wilson’s theorem, this
yields
—l=(p-D!=(-1)P D2 mod p. (6.7.3)

The second case is when there are two solutions of (6.7.1) mod p. In this case, two
of the p — 1 nonzero residues a are equal to their partner a*, and the remaining p — 3
are not. Call the two solutions z and —z, so z> = —=1 mod p. Then z(-z) = —z> = 1
mod p. Hence when we multiply (6.7.2), we obtain (p — 3)/2 pairs aa®, each pair
reducing to —1, together with +z. By Wilson’s theorem, this yields

—1=(p-1) = ()P 2(=zg) = (-1)P72 mod p. (6.7.4)

Since p is odd, (6.7.3) implies (=1)?~1/2 = —1, and (6.7.4) implies (-=1)=3)/2 =
—1. But this happens if the powers of —1 are odd. Therefore if there are no solutions,
(p — 1)/2 is odd. If there are solutions, (p — 3)/2 is odd.

Exercise 6.14 shows (p — 1)/2 is odd if and only if p =3 mod 4, and (p — 3)/2
is odd if and only if p = 1 mod 4. We have proved

Theorem 6.7.1 (Euler’s Theorem) Let p be an odd prime number. Then (6.7.1)
does or doesn’t have solutions according to whether p =1 mod 4 orp =3 mod 4.

6.8 RSA Encryption

Suppose you want to send somebody a message by publishing it in a newspaper,
but you want only the recipient to understand the contents of the message. Nobody
else should be able to read the message. It is possible, but highly improbable, that
nobody will notice or read the published message.

A more reliable alternative is to garble or hash or encode the published message
via some systematic procedure, where letters in the original message are replaced by
other letters in a systematic fashion. This encoding process is called encryption.

The encryption procedure must be reversible, so that the recipient can recover
the original message. The decoding process the recipient employs to extract the
message is decryption. Together, these procedures are a cryptosystem. Since nobody
else should be able to do this, the cryptosystem utilized must depend a secret
key or password, without which it will not work. Because of the necessity of a
simultaneous sharing of a secret key between sender and recipient, this is symmetric
key cryptography.
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The chief drawback of the above cryptosystem is the sharing of the key. How does
the sender send the key to the recipient, or vice-versa? Publish it in a newspaper?
Talk on the phone? It is possible, but highly improbable, that these methods are
secure. Thus one needs a reliable alternative.

In the 1970’s, three mathematicians with last name initials R, S, and A, came up
with an asymmetric or a public key cryptosystem, leading to public-key cryptography.

In a public-key cryptosystem, there are two distinct keys, a public key used for
encryption, and a private key used for decryption. Each person desiring to send or
receive messages will have one of each. As the names imply, a person’s private key
is kept private, while a person’s public key is shared with the world.

Going back to our scenario, with you wanting to send a message to a recipient,
here’s how it works. The recipient sends you their public key, which you use to
encrypt the message. Then you send the encrypted message. Once received, the
recipient decrypts it with their private key. That’s it.

In RSA cryptography, the cryptosystem is based in modular arithmetic. Mod-
ular arithmetic provides us with a cryptosystem that uses two keys, as described
above. Since then, other public-key cryptosystems have been devised, based on other
mathematical techniques.

In RSA cryptography, the public and private keys are based on a pair (p, g) of two
large primes p and g. The public key is the pair (n, ¢), where n = pgq is the product
of p and ¢, and e is any integer less than and relatively prime to (p — 1)(¢ — 1). The
private key is the pair (n, d), where d is the reciprocal of e mod (p — 1)(qg — 1). We
also assume the message to be sent is an integer m less than n. This last condition is
not a constraint, since any electronic message is an integer.

For example, with (p, g) = (5, 11), a corresponding public key is (n, €) = (55, 3),
since 3 is relatively prime to (p — 1)(¢ — 1) = 40. The corresponding private key is
(n,d) = (55,27), since 3-27 =1 mod 40. With these choices, you can encrypt any
integer m up to size pqg — 1 = 54.

These days the recipient is a web site that you’re interacting with. Here’s the
private data from a website:

>>> p = """00:£f1:63:24:49:8c:bd:82:de:73:ca:fb:54:el:7b:
41:4£:14:6€:69:94:£f3:¢c7:72:c7:69:ba:4a:ae:25:
50:df:ce:c4:61:10:26:17:db:ad:fe:1c:4c:92:6¢C:
c4:fb:16:d3:57:1e:4b:28:9f:b5:6d:2c:00:ec:2f:
23:1f:a22:67:c4:d1:13:ad:b1:47:dc:79:51:b8: fe:
39:41:11:bb:36:13:9d:61:58:e6:bd:02:1d:4b:ce:
57:£5:32:7d:b6:9£:23:67:ff:2d:5e:51:dd:a8:50:
44:28:59:0b:9f:4d:e5:0c:15:bd:63:3e:77:2f:b2:
cl:17:cl1:£1:19:a0:€9:19:a5’"’

>>> q = "'’00:df:12:aa:b2:4c:a2:b2:63:a3:d9:f6:1e:0d:ab:
07:ee:fc:7a:4d:13:bc:29:0c:£9:b5:11:15:d8:ec:
a8:3£:¢5:d3:29:6d:75:63:6f:db:d1:c7:44:94:ab:
cf:98:9a:72:89:cd:bd:1a:23:86:ab:ec:el:e7:df:
Oe:bc:ee:5c:73:92:2b:32:bc:2b:bc:de:28:67:41:
92:46:5e:e0:72:21:2d:31:9e:1c:2c:a5:9b:c6:56:
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88:5a:84:6£:22:f4:25:60:64:5b:66:ee:88:db:54:
39:55:ce:07:df:81:b0:£f5:ba:b6:54:87:95:3b:e9:
23:73:54:1e:34:a5:84:39:4b’ "’

>>> e = 65537

and d is given by Exercise 6.17. Here p and ¢ are in bytes, and e is in decimal. The
exponent e is a prime of a particular form, a Fermat prime (Exercise 6.16), so e is
automatically relatively prime to (p — 1)(¢g — 1).

Encryption of the cleartext message m is carried out by raising m to the power
e mod n, c = m® mod n. This results in the cyphertext message c. The RSA result
says if you choose d to be the reciprocal of e mod (p—1)(g—1), thenm = ¢? mod n.
Thus decryption of the cyphertext message c is carried out by raising ¢ to the power
dmodn, m=c? mod n.

To summarize, the map m +— m® mod n is encryption, and the map ¢ +— ¢
mod n is decryption. The RSA result is that these maps are inverses to each other,
and thus we have a valid cryptosystem.

Since e is chosen relatively prime to (p — 1)(¢ — 1), by Theorem 6.4.2, e does have
areciprocal d,

d

ed=1 mod (p-1)(g-1).

Here is the formal statement.

Theorem 6.8.1 (RSA algorithm) Let p and q be primes and let n = pg. If m < n
and c is the residue of m® mod n, then the residue of ¢ modnism,

ct=m%=m mod n. (6.8.1)

Proof Since ed =1 mod (p —1)(q — 1), ed — 1 is a multiple of (p — 1)(g — 1), so
ed —1=k(p—1)(g— 1) for some integer k. If m is relatively prime to n = pq, then
by Euler’s theorem

med=! = k==l = ke = 1k = 1 mod n.

Multiplying by m yields (6.8.1). If m is divisible by n, then both sides of (6.8.1) are
zero, so (6.8.1) is valid. If m is divisible by p but not by ¢, then by Fermat’s little

theorem,
me4 = kP01 = (Kp=D) = | mod q.

Thus m¢?~! — 1 is divisible by g. Since m is divisible by p, multiplying by m implies
me4 — m is divisible by n = pq, which is (6.8.1). Similarly if m is divisible by ¢ but
not by p. O

If one knows the public key, one knows pq. Factoring pg will then lead to (p, ),
and from there to d. How is such a system secure? This is secure only if p and
q are chosen large enough, at least 200+ decimal digits long. Then, with current
technology and current mathematics, the fastest factoring algorithms applied to pg
take hundreds of years. As time goes on, however, both mathematics and technology
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get better, forcing one to use larger primes (p, g), or alternative cryptosystems. This
has already happened over the last twenty years.

6.9 Quadratic Residues

Let p be an odd prime. After ax = b and x> = *1, the next equation to try is
x> =aq, mod p. (6.9.1)
Here a is any integer. If x is a solution, then
(p-x)P=p*—2px+x*=a mod p,

so p — x is a solution. Since p is odd, p — x # x. Thus (6.9.1) either has no solutions,
or has two solutions x and p — x.

Since the case a = 0 is trivial (0 is a quadratic residue), we deal only with nonzero
residues a # 0 mod p. We call a a quadratic residue if (6.9.1) has two solutions.
Otherwise, a is a quadratic nonresidue.

For example, —16 is a quadratic residue mod 5 since for x = 2, x> = 4 = —16
mod 5, and 17 is a quadratic nonresidue since 17 # 0%, 17 # 12,17 = 22,17 = 32,
17 # 4% mod 5.

For any p, 1 is a quadratic residue. By Euler’s theorem, —1 is a quadratic residue
ifand only if p =1 mod 4.

It is natural to denote the solutions of (6.9.1) as =y/a mod p. In §6.7, we studied
V-1 mod p. Here we consider other a, for example a = 5, leading to Figure 6.9.

X P X p X p X
no 19 9 43 no 71 17
0 23 no 47 no 73 no

N | w T

no 29 11 53 no 79 20
11 4 31 6 59 8 83 no
13 no 37 no 61 26 89 19
17 no 41 13 67 no 97 no

Fig. 6.9 Existence of V5 mod p.

If @ and b are quadratic residues, then there are x and y satisfying x> = ¢ mod p
and y> = b mod p respectively. Since (xy)> = x2y? and (x/y)? = x%/y?, it follows
that ab and a/b are quadratic residues. From this, it follows (Exercise 6.18) that
there are an equal number of quadratic residues and nonresidues,
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Theorem 6.9.1 Let p be an odd prime. There are (p — 1)/2 quadratic residues and
(p = 1)/2 quadratic nonresidues.

For example, for p = 5, we have 12 = 1, 2% = 4, 32 = 4, 4% = 1, so the quadratic
residues mod 5 are 1 and 4. Similarly, for p = 7, the quadratic residues are 1, 2, and
4.

If a is a quadratic residue and b is a quadratic nonresidue, it follows from above
that ab is a quadratic nonresidue. We encapsulate this behavior by introducing the

Legendre symbol (a|p) or
a
(p)’

by defining (a|p) = +1 if a is a quadratic residue, and (a|p) = —1 if a is a quadratic
nonresidue. In this language, (1|p) = 1 for all p, and

(__1) = (=12
p

by Euler’s theorem. We extend (a|p) to any integer a by setting (a|p) = (a,|p), where
ap is the residue of a mod p.
The above discussion is summarized by

Theorem 6.9.2 Let p be an odd prime. Then for integers a, b,

(7))

Let a be a nonzero residue. If x is any nonzero residue, let x* = a/x, so xx* = a.
Then, as before, we pair the nonzero residues

L,2,...,p—1

into pairs (x, x*). There are two cases.

If a is a quadratic nonresidue mod p, then none of the nonzero residues x equals
their partner x*, so the product (6.7.2) pairs off into a?~1/2 hence (p—1)! = a'P~D/2,

If a is a quadratic residue mod p, let z and p — z be the solutions of x> = a
mod p. Then z = z* mod p, (p — z) = (p — z)* mod p, and none of the remaining
(p — 3)/2 nonzero residues x equals their partner x*, so the product (6.7.2) pairs
off into aP~3/2z(p — z), hence (p — 1)! = a'?I/2(=a) = —a'P~D/2, Appealing to
Wilson’s theorem and the Legendre symbol, we conclude

Theorem 6.9.3 Let p be an odd prime, and suppose p does not divide a. Then
a(p_l)/2 = (g) mod p
p

If a is an integer, let a, be the residue of @ mod p, and let |a|, be the residue
mod p of (=1)“ra,. Since p is odd, |a|, is always even. For example, with p = 17,
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|23|, = 6], = 6 and [24|, = |7|, = =7 = 10. Here is another formula for the
Legendre symbol.

Theorem 6.9.4 (Eisenstein’s Lemma) Let p be an odd prime, and suppose p does
not divide a. Let

S(a, p) = (a2)p + (ad)p + -+ -+ (a(p - 1))p.

Then
(13)) = (—1)S@p), (6.9.2)

Proof Look at the even residues 2,4, ..., p — 1; there are (p — 1)/2 of them. We
claim the list
[2alp, [4alp, ..., |(p — Dalp (6.9.3)

consists of (p — 1)/2 distinct even residues: If |xa|, = |ya|, with x and y even, then
xa = +ya mod p. Cancelling @, x = =y mod p. But x and y are both even and
p is odd, so we can’t have x = p — y. Hence |xal|, = |ya|, implies x = y, and we
conclude the residues in (6.9.3) are distinct. Thus (6.9.3) is a rearrangement of the
even residues. Multiplying, we have

24+ (p=1) = 2al, - 4al, -+ [(p = Dal.

But

SO
24 (p-1)=(-1)5@P2q . 4q ... . (p-1a mod p.

1= (=1)S@P)gP=D2 mod p.

By Theorem 6.9.3, this implies

(ﬁ) = (-1)5@P) mod p.
p

Since pis odd, (=1)* = (=1)> mod p if and only if (—=1)¢ = (—1)”. This establishes
(6.9.2). O

Since any a has a prime factorization, to compute (a|p), by Theorem 6.9.2, it is
enough to compute (¢q|p) for the prime factors g of a. The main result in this section
is

Theorem 6.9.5 (Gauss’ Law of Quadratic Reciprocity) Let p and q be odd primes.
Then
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(E) (Z) = (1)P-Dia-1/4
a)\p

Proof The proof is based on an alternate expression for (g|p) involving Figure 6.10.
Here, the dots and the card suits s, ©, ¢, & are centered at the points with integer
coordinates, the lattice points, and the equation of the line is yp = gx. Because p
and g are relatively prime and the slope of the line is ¢/p, none of the lattice points
are on the line. We count card suits lying below the line. For example, with p = 17,
g =11,and x = 14, since gx/p = 11-14/17 = 9.05, there are 9 & above the point x.

We say a and b have the same parity if (=1)* = (—=1)?. This happens if and only
if a and b are both even or both odd. Then a and —a have the same parity. Moreover,
since p is odd, ap and a have the same parity. We show first

(Z) — (_l)total number of & and . (6.9.4)
p
q
<o < ¢ L}
¢ < L}
¢ < L) L)
¢ L L) L
. . . . . . . S NI ST S\
G2 b e
. c . o o . . S Y
Q L) 3 L] L L] L
M * Q L) i L) L L) L)
L] Q * Q & L) L L) L
L] Q L] Q L) Q L] L) L L) L)
00 p)Z x p

Fig. 6.10 Quadratic reciprocity with p = 17 and g = 11.

Let x be an even residue. Dividing gx by p, the remainder is (gx),, and the
quotient Q is the number of integers between 0 and gx/p. Thus Q is the number of &
or & above the point x. Since p is odd, Q has the same parity as Op. Since x is even,
pis odd, and gx = Op + (¢x)p, (¢x), has the same parity as the number of # or &
above the point x.

It follows that S(q, p) = (g2), + (g4)p +--- + (q(p — 1)), and the total number
of & and & have the same parity. By Eisenstein’s Lemma 6.9.2, this implies (6.9.4).
Note (6.9.4) is valid for any positive integer g.
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To complete the proof, note each column has g — 1 dots, which is even. Hence the
total number of # has the same parity as the total number of ¢. By symmetry across
the point (p/2, q/2), the total number of ¢ equals the total number of ©. Hence

(2) — (_ 1 )total number of & and
p

s

or
(z — (_1)tota1 number of lattice points in shaded rectangle below py = gx
p

Switching the roles of p and g,

(p ) — (_1 )total number of lattice points in shaded rectangle above py = gx

Since the total number of lattice points in the shaded rectangle is

p—-1 g-1

2 27

this completes the proof. O

Fig. 6.11 Quadratic reciprocity with p = 17 and g = 2.

Turning to the special case g = 2, (6.9.4) remains valid. By Figure 6.11, above
each even residue x, we have no &, if x < p/2, or one #, if x > p/2. Hence

total number of & and & = |[{k : p/2 < 2k < p}|.

There are four cases: primes p of the form p = 8n + 1 and p = 8n + 3. By Exercise
6.20, |[{k : p/2 < 2k < p}|iseven for p = 8n+ 1 and odd for p = 8n + 3. By (6.9.4),
we conclude

Theorem 6.9.6 2 is a quadratic residue mod p if and only if p = 8n + 1.

Turning to the existence of V3 mod p, by the law we have

3\ _ (B} _ye-ve
()= [3) o

Trying p = 3n = 1 doesn’t lead anywhere, nor does p = 6n + 1. Trying p = 12n + 1
and p = 12n + 5 leads to Exercise 6.21.
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P % p x p x p x
3 no 19 no 43 no 71 12
5
7

no 23 5 47 7 73 32
3 29 no 53 no 79 9
11 no 31 8 59 no 83 no
13 no 37 no 61 no 89 25
17 6 41 17 67 no 97 14

Fig. 6.12 Existence of V2 mod p.

Given p, let p* = (=1)P~D/2p_ Then quadratic reciprocity may be rephrased as

For any odd primes p and q,
\P mod q exists if and only if \Jg* mod p exists.

Exercises

Exercise 6.1 Build the addition, multiplication, negative, reciprocal, and division
tables for Zg and Z.

Exercise 6.2 Insert a counter and increment it after every multiplication and divi-
sion in your code for Exercise 5.5, and show the number of multiplications and divi-
sions in exteuclid(a,n) is roughly log(n), by returning counter/math.log(n).

Exercise 6.3 Given an integer a in Z, let a,, be the corresponding modular integer
in Z,. Show (a + b),, = a, + b,,. Here the + on the left is in Z, while the + on the
right is in Z,,.

Exercise 6.4 Continuing the previous exercise, show (ab),, = a, b,. Here the multi-
plication on the left is in Z, while the multiplication on the right is in Z,,.

Exercise 6.5 Continuing the previous exercise, show (a/b), = a, /b, if p is a prime
and a/b is an integer. Here the division on the left is in Z, while the division on the
rightis in Z,,.

Exercise 6.6 Use Theorem 6.5.2 to show (a + b)? = aP + b in Z,.

Exercise 6.7 Add the special method __sub__(self,other) to the class modint
soml - m2 returns a — b mod n, where

>>> (a,n) == (ml.value,ml.modulus)
>>> (b,n) == (m2.value,m2.modulus)
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Exercise 6.8 Continuing the previous exercise, add __pow__(self,e) to modint
so that m**e returns a® mod n, computed by repeatedly dividing e by 2 (§6.3).

Exercise 6.9 Continuing the previous exercise, add a method reciprocal (self)
tomodint so thatm.reciprocal () returns the reciprocal of @ mod n (use Exercise
5.5).

Exercise 6.10 Continuing the previous exercise, add __div__(self,other) to
modint so ml/m2 returns a/b mod n.
Exercise 6.11 Continuing the previous exercise, add a method 1egendre(self) to

modint so that m.legendre () returns the Legendre symbol (a|n).

Exercise 6.12 Let a and bbe in Z,,. Show a/b exists in Z,, if and only if g = gcd(b, n)
divides a.

Exercise 6.13 Write out the proof of Euler’s theorem in complete detail.

Exercise 6.14 Show (p — 1)/2 is odd if and only if p =3 mod 4, and (p — 3)/2 is
odd if and only if p =1 mod 4.

Exercise 6.15 Write the web server private key (p, ¢) (§6.8) in decimal. How many
decimal digits do p and ¢ have? Compute n = pgq.

Exercise 6.16 Continuing the previous exercise, show that e is prime and e = 2241
for some k. Hence e and (p — 1)(g — 1) are relatively prime.

Exercise 6.17 Continuing the previous exercise, compute the reciprocal d of e mod
(p— 1)(g — 1) (Exercise 1.14).

Exercise 6.18 Let p be an odd prime. Show that there are an equal number of
quadratic residues and quadratic nonresidues (0 is neither).

Exercise 6.19 Write a function yes_or_no(a, p) thatreturns va mod p if it exists,
and 'no’ otherwise.

Exercise 6.20 Count the number of even integers between p and p/2: Show that
I{k : p/2 <2k < p}|

iseven for p = 8n = 1 and odd for p = 8n + 3.

Exercise 6.21 Show 3 is a quadratic residue mod p if andonly if p = 12n+ 1, and a
quadratic nonresidue if and only if p = 12n + 5.

Exercise 6.22 Show for p prime odd,

(Z) = (=1)P*-D/8,
p
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7)- 56

to show —3 is a quadratic residue mod p if and only if p = 6n + 1, and a quadratic
nonresidue if and only if p = 6n — 1.

Exercise 6.23 Use

Exercise 6.24 Twin primes are primes of the form p, p + 2. Show

7))

Exercise 6.25 Write a function legendre(a,p) that computes (a|p) by factoring
a into prime factors, then using reciprocity to invert. For example, starting with
legendre(11,29) leads to, up to =+ signs,

legendre(29,11) -> legendre(7,11) -> legendre(ll,7)
%
-> legendre(4,7) -> legendre(2,11) times legendre(2,11)



Chapter 7
Rationals Q

Recall the only integers having reciprocals are +1 (§4.6). The rationals Q are obtained
by enlarging Z so that all nonzero rationals have reciprocals. Therefore the properties
that characterize the rationals Q are

—_

._
e

11.

o © N kWD

. additive commutativity (7.1.1)

additive associativity (7.1.2)

existence of zero (4.1.3)

existence of negatives (7.1.4)

multiplicative commutativity (7.1.5)
multiplicative associativity (7.1.6)

existence of one (7.1.7)

distributivity (7.1.8)

every nonzero rational has a reciprocal (7.1.9)
minimality (7.1.10)

zero is neither positive nor negative (7.1.11)

Every integer is a rational, but not every rational is an integer. Because of this,

minimality here (7.1.10) is not the same as minimality (4.5.1) for integers. The latter
is valid for integers, while the former is valid for rationals. Similarly for the other
axioms.

In §A.3, we show there is essentially one set Q equipped with addition and

multiplication operations satisfying these axioms.

113
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7.1 Basic Properties

Rationals may be added. As for integers, addition of rationals satisfies commutativity,

X+y=y+x for every x and y, (7.1.1)

and associativity,
(x+y)+z=x+(+2) for every x and y and z. (7.1.2)
There is a special rational 0, called zero, satisfying
x+0=0+x=x for every x. (7.1.3)

If arational x is not zero, then we say x is nonzero. To every rational x corresponds
its negative —x: This is the rational y which when added to x yields zero:

x+y=x+(-x)=0. (7.1.4)

Rationals may be multiplied. As for integers, multiplication of rationals satisfies
commutativity,
Xy =yx for every x and y. (7.1.5)

and associativity,
(xy)z = x(y2) for every x and y and z. (7.1.6)
There is a special rational 1, called one, satisfying
x-1=1-x=x for every ux, (7.1.7)
and addition and multiplication are related by distributivity,
x(y+2z)=xy+xz for every x and y and z. (7.1.8)

Because the above properties are structurally the same as the corresponding
properties of integers, all consequences of these properties, derived in Chapter 4,
remain valid for rationals. For example, the rationals O and 1 are unique, —(—x) = x
for every rational, etc.

Moreover, the rationals that are sums of ones

+(1+1+---+1)

behave exactly like integers, and so every integer is a rational.
What differentiates rationals from integers is

every nonzero rational has a reciprocal. (7.1.9)
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This is the division property, as it allows us to define division as multiplication by
the reciprocal,

1
f=x-—, y # 0.
y y
Then the reciprocal of x/y is y/x since
1 1 1 1
f-X:)c-—-y-—zx-—-y-—=1, x#0,y#0.
y X y X X y

Let Q™ be the set of all rationals x that are ratios a/b of positive integers a and b.
These are the positive rationals. We write x > 0 to mean x is a positive rational.

Let Q™ be the set of all negatives of the positive rationals. These are the negative
rationals. We write x < 0 to mean x is negative.

As for integers, the rationals are minimal, in the sense

every rational is positive, or negative, or zero, (7.1.10)

and
zero is neither positive nor negative. (7.1.11)

This is called positivity, because, as for integers, it forces Q* and Q™ to be disjoint.

A rational x = a/b is in lowest form if a and b are relatively prime, and b > 0.
When x = a/b and y = c/d are in lowest form, a/b > c/d if and only if ad > bc. It
is easy to then check

the sum of positive rationals is positive, (7.1.12)

and
the product of positive rationals is positive, (7.1.13)

Then < and > follow the same rules we saw for integers, since these rules depend
only on the above four properties (§4.5).

Here are some consequences of the above properties. By commutativity and
associativity, the reciprocal of xy is the product of the reciprocals of x and y,

s x#0,y#0,

since

From this follows

since
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It follows that we may always reduce a rational to lowest form. By distributivity,

=— 4 -, c#0. (7.1.14)
c c c

From this follows Jeb

a ¢ ad+bc
i 2= , b+0,d+0, 7.1.15
5T o # # ( )

and a ¢ ac

.= b+0,d+0. 7.1.16
Ry # # ( )

These consequences are valid for a, b, ¢, d rationals, not just integers.
Rationals are built in Python as follows

>>> from fractions import Fraction
>>> a = Fraction(6,10)

>>> type(a)

fractions.Fraction

>>>  a

Fraction(3,5)

>>> print(a)

3/5

Rationals in Python are always converted into lowest form,

>>> b = Fraction(123456789,987654321)
>>> print(b)

13717421/109739369

>>> print(a+b)

27434842/109739369

>>> b.denominator

109739369

>>> b.numerator

13717421

If x = a/bis arational, there is a unique integer ¢ = | x|, the floor of x, satisfying
g < x < g+ 1. This follows from the division algorithm (§5.2): Let ¢ be the quotient
upon dividing a by b, and let r = a — bq be the remainder. Since 0 < r < b, g
satisfies ¢ < x < g + 1. The floor can also be characterized as

x| =max{kinZ: k < x}.
For any integer n, |n| = n, and
[x+n]=|x]+n. (7.1.17)
Moreover, when x is not an integer, a moment’s thought shows

[—x] =—[x] - L (7.1.18)
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for any integer n.

7.2 Farey Series

farey series ford circles

Fig. 7.1 Ford circles.

Fig. 7.2 Ford circles zoomed in.

7.3 Existence of V2

A quadratic equation is the degree two equation

f(x)=ax*+bx+c=0, (7.3.1)
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where a, b, and c are integers. The simplest such equation is x> = 2, whose solution
x=V2is rightly called the square root of 2. The following result goes back at least
to the Greeks.

Theorem 7.3.1 There is no rational x = a/b whose square is 2.

b’ b

a

Fig. 7.3 V2 is irrational.

Proof There are many proofs of this. One standard proof follows Figure 7.3. If
x = a/b were a rational satisfying x> = 2, then a®> = 2b*. In Figure 7.3, the large
square has sides a and the two shaded squares have sides b. The two shaded squares
overlap and fail to cover the large square.

Let the sides of the overlap be a’, and let the sides of the uncovered squares be b’.
Since the area a of the large square equals the sum 25> of the areas of the shaded
squares, the overlap area a’> equals the sum 25’? of the the areas of the uncovered
squares.

So starting with integers (a, b) satisfying a®> = 2b*, we found smaller integers
(a’, b') satisfying a’> = 2b’>. But this argument can be repeated indefinitely without
limit, contradicting the fact that the positive integers have a minimum at 1. Thus our
hypothesis a> = 2b*> must be impossible. O

This proof can be presented purely algebraically, by noting b* = a — b and
a’ =a-2b"=a-2(a-Db)=2b-a.Then
a’? = 2b"* = (2b - a)* - 2(a - b)?
= 4b* — 4ab + a* - 2a* + dab - 2b* = 2b* — a* = 0.
The above proof technique is called infinite descent, since it produces an infinite

descending sequence of positive integers a > a’ > a’’ > ..., which shouldn’t
happen, leading to a contradiction.
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Given this, how do we compute the square root of 2? Since there is no rational
square root, the best we can do is compute rational approximations a/b to V2, in the
sense (a/b)? differs from 2 by smaller and smaller amounts.

Fig. 7.4 The Babylonian algorithm.

The method we describe, used by the Babylonians thousands of years ago, starts
with a guess x. If the guess is wrong, it’s either greater than V2 or less than V2. If
X > \/5 then 2/x is less than \/5, since

isVi — 22 _va
X

If x < \/E, then 2/x > \/5, since

i<Vi — 222 _va
PR

Hence, in either case, x and 2/x are on opposite sides of V2 (try this with x =
1,2,3,...), and their average,
, 1 N 2
xX'==|x+-],
2 X

will be a closer and hence better guess for V2. Starting with x = 1, and repeating
this procedure, we get x, x’, x”, ...,

13 17 577 665857 886731088897
1727127 408° 470832 627013566048 "~

The number 577/408 appears on a Babylonian clay tablet, see [1]. This sequence is
the output of sqrt2(7), where

0>> def sqrt2(n):

1>> x = Fraction(1l,1);
1>> for i in range(l,n):
2>> print(x,end=", ’)
2>> X = (x+2/%x)/2

We show as x runs through this sequence, x> approaches 2. By the binomial
theorem,

1 2 2
~2= - lh 5= 50720
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so x’2 > 2. Since all the approximations are at least 1,
2 L 5 2
0<x —ZSZ(x -2)~.

Hence (Exercise 7.13) starting with xy = 1, after n steps,

4

0<x2-2<—,
n 42;1

n>l. (7.3.2)

Thus x2 approaches 2.

A nonzero integer D is squarefree if it is not divisible by a square a>. For example,
6 =2 -3 and —1 are squarefree, but 12 = 3 - 22 is not. By the fundamental theorem
of arithmetic, this is the same as saying +D is a product of distinct positive primes,
orD=—1.

A quadratic irrational is a number of the form

x=a+bVD, (7.3.3)

where a and b are rationals, and D is a squarefree integer. The rational part of x is
a, the irrational part of x is b, and the discriminant is D. When b # 0, quadratic
irrationals are not rationals (Exercise 7.5).

Since (7.3.1) is solved by the quadratic formula

b+ Vb2 -4
x = % (7.3.4)
a

the solutions of (7.3.1) are quadratic irrationals. Conversely, every quadratic irra-
tional x satisfies (7.3.1) for some integers a, b, ¢ (Exercise 7.4).
Since D is squarefree,

a+bVD =c+dVD if and only if a=candb=d.

In particular, a + bVD = 0 if and only if a = 0 and b = 0.
Sums and products of quadratic irrationals are given by

(a+bVD) + (c +dVD) = (a +¢) + (b + d)VD,

and
(a + bVD) - (¢ + dVD) = (ac + bdD) + (bc + ad)VD.

Since D is not the square of a rational, a? — b2D is never zero, unless a + wD = 0,
and reciprocals are given by

1 a b
= - VD.
a+b\VD a*-b*D a*>-b*D
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Strictly speaking, we have not defined VD for D squarefree. For example, above
we have shown there is no rational x satisfying x> = 2, but we haven’t discussed
the existence of such a number. Similarly, Exercise 7.5 shows there is no rational x
satisfying x2 = D, but we haven’t discussed the existence of VD. This issue can be
avoided by considering quadratic irrationals as ordered pairs x = (a, b) of rationals
subject to the above addition and multiplication rules (§B.1).

Quadratic irrationals may be manipulated in Python by creating the class

0>> class quadirr:
1>> def __init__(self,discriminant,rational,irrational):

2>> self.discriminant = discriminant
2>> self.rational = rational

2>> self.irrational = irrational
>>>

>>> a = Fraction(3,5)

>>> b = Fraction(11,17)

>>> D = 21

>>> x = quadirr(D,a,b)

>>> x.rational

3/5

>>> Xx.irrational

11/17

>>> x.discriminant

21

Here discriminant is a squarefree int, and rational and irrational are
Fractions.

When the discriminant D is positive, quadratic irrationals are ordered, x < y, just
like Z and Q, by considering VD to be positive. Then there are three cases when
a + bVD is positive.

The first case is when a and b are both nonnegative, with at least one of a or
b positive. The second case is when a is positive and b is negative. In this case,
a + bVD > 0 implies a > —bVD > 0 which implies a> > b>D. The third case is
when a is negative and b is positive. In this case, a+bVD > 0implies bVD > —a > 0
which implies a> < b?D.

Carrying out a similar analysis for a + bVD < 0, we end up with Figure 7.5,
where the entries +(a? — Db?) indicate the sign of a + bVD is the product of the sign
of a with the sign of a> — Db?.

The key point is that Figure 7.5 allows us to define the sign of a + bVD without
any reference to VD. We now turn the argument around and define x = a + b\/D as
positive or negative following Figure 7.5. Then VD = 0 + 1 - VD > 0 follows from
Figure 7.5, and x > 0 if and only if —x < 0 (Exercise 7.7). Moreover, the following
consequences hold, when D > 0:

1. every quadratic irrational is positive, or negative, or zero,

2. zero is neither a positive nor a negative quadratic irrational,
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3. the sum of positive quadratic rationals is positive,
4. the product of positive quadratic rationals is positive.

The first two follow immediately from Figure 7.5. The derivation of the last two is
quite involved, because there are many cases to check. We establish them in §B.1.
Defining x < y to mean y — x is positive, < and > follow the same rules we saw
for integers, since these rules depend only on the above four properties (§4.5).
Why do this at all? Why not just define VD to be positive and work from there?
Because (Exercise 7.5) there is no rational square root of D, and we cannot take such
an appoach and stay within the realm of algebra.!

a
—+ -
b 0
+ + + Db? — a2
0 + 0 -
- a®? - Db? - -

Fig. 7.5 Signof x = a + b\VD.
In §7.4, we will need the floor of a quadratic irrational x. The floor | x] of a
quadratic irrational x is the unique integer g satisfying
g<x<qg+1.

Theorem 7.3.2 Let D be positive. The floor | x| of a quadratic irrational x = a+b\VD
exists.

Proof By Exercise 7.8, VD < D. Let
S={kinZ:k < x}

S is nonempty, since k = —|a| — |b|D < a — |b|VD < a + bVD = x. Also, S is
bounded above, since any k in S satisfies k < |a| +|b|D. By Exercise 4.8, ¢ = max S
exists. By definition of S, ¢ < x. By definition of max, g+ 1isnotin §,sog+1 > x.0

Note the definition here of | x| is consistent with that in §7.1.

1 VD is a well-defined real number only after we’ve defined real numbers, which we do not discuss.



7.4 Continued Fractions 123

7.4 Continued Fractions

Another method of approximating x = V2 by rationals is to write x> = 2as x>—1 = 1.
Factoring x> — 1 = (x — 1)(x + 1) yields

1
-1= ,
. x+1
or
x+1=2+ .
x+1

Looking at this equation recursively, and inserting the left side into the denominator,

1 1
x+1=2+ 1 :2+ :2+

2+

These are continued fractions. Since we may repeat this indefinitely, we end up
expressing

1
V2=1+

2+
2+
2+
2+

1
24...

as an infinite continued fraction.
We are interested in continued fractions of the form

X =qo+ ! ; . (7.4.1)
q1 + 1
q + 1
q3 + 1
4 gs+ ...
where qo, q1, ¢2, q3,. .. are integers. Such continued fractions are periodic if the
sequence qi, 2, q3,. - . eventually repeats. For example, the continued fraction for

\/Erepeats, since g, =2,n > 1,and gp = 1.
Conversely, we may use the repeating pattern in
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x=1+ , (7.4.2)
2+

1+
2+
1+

1
24...

to find x. Thinking of the continued fraction as infinite descending stairs, walking
down the stairs two steps results in the same stairs, so

x=1+

24—
X

Clearing denominators leads to the quadratic equation
2x* - 2x - 1=0.

Applying (7.3.4), we obtain
1. V3

:—+—’
T2

where we take the plus sign since x is positive. We want to generate continued
fractions for numbers x of the form (7.3.4).

Given a rational x, how are continued fractions such as (7.4.1) generated? They
are generated as follows. Let go = [ x] (§7.1) and let xo = x. If x is not an integer,
then |

X0 =4qo+ — (7.4.3)
X1
defines a rational x; > 1. If x| is not an integer, we may repeat this and

1

X0 =4go + 1 (744)

q1 + —

X2
defines a rational x, > 1. Continuing, we obtain rationals xg, xi, X2, ... satisfying

xo = x and
1
Xn =qn + s n>0. (7.4.5)
Xn+1

Since the denominators of xy, x1, X2, . . . are a strictly decreasing sequence of positive

integers, at some point x, must be an integer ¢,, and this process must terminate.
‘We obtain a finite continued fraction
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1

xX=qp+ .

q0 1

+
q1 1
+
q2 1

+
q3 ' 1
Cp
qn

withg; > 1,92 > 1, ..., g, = 1. Thus a finite continued fraction is equivalent to

the euclidean algorithm (§5.3).

We wish to repeat this process starting with a quadratic irrational x. We assume
D > 0, so | x] is defined as in §7.3. Given any quadratic irrational x that is not a
rational, let xo = x, go = |xo], and define x; by (7.4.3). Since 0 < x9 — go < 1,
x1 = 1/(x0 — qo) > 1. Thus x; is a quadratic irrational that is not a rational, and
q1 = x| > 1.

Repeating, we define x, by (7.4.4). Then x; is a quadratic irrational that is not a
rational, and ¢, = | x»| > 1. Continuing, we obtain quadratic irrationals x, x, .. .,
none of which are rationals, satisfying (7.4.5). Since none of x|, x5, . .. are rationals,
this process does not end, and g,, > 1 for n > 1. This is what is meant by (7.4.1).

Note that go = |xo] depends only on xg, hence if x,, = xy for some n, then
qn = qo, and the sequence of quotients repeats after n steps, g, = 9o, gn+1 = 41,

qn+2 = 42, . - ..

Theorem 7.4.1 (Lagrange’s Theorem) If x is a quadratic irrational that is not a
rational, the quotients qo, q1, q2, ... in the continued fraction (7.4.1) eventually
repeat: There are positive integers n and m with qn+k = Gn+m+k, k = 0. Conversely,
if (7.4.1) eventually repeats, then x is a quadratic irrational that is not a rational.

Proof Assume x satisfies (7.3.1) with D = b*> — 4ac. Then D is not a square of a
rational. By (7.4.5) (Exercise 7.14), xo = x, x1, X2, . .. satisfy

falxn) = aan + bpxy +c, =0, n >0,
where fy(x) = f(x) and ay,, by, ¢, satisfy

ansl = a”ql% + bnqn + cp
bu+1 = 2anqn + by, (7.4.6)

Cn+1 = Ap.
The discriminant of f,(x) doesn’t depend on n (Exercise 7.15),
b2 —4a,c, = D, n>1. (7.4.7)

Since an+1 = fu(gn), it follows that a,, # 0, hence |a,| > 1 and ¢, > 1, and x,,
n > 1, are quadratic irrationals that are not rational.

We show a,, does not eventually become positive: It is not the case that a,, > 0 for
all n beyond some point. If this were so, then by (7.4.6), since g,, > 1, by+1 > 2+ by,
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so b, eventually becomes positive, and by (7.4.6) again, so does c,. But this is
impossible, since x, > 0 and f,(x,) = 0. Thus a, does not eventually become
positive.

Similarly, a,, does not eventually become negative: If this were so, then by (7.4.6),
since g, > 1, by < -2 + by, so b, eventually becomes negative, and by (7.4.6)
again, so does c,. But this is impossible, since x;, > 0 and f,,(x,) = 0. Thus a,, does
not eventually become negative.

Thus the sequence ag, a;, ap, ... switches sign infinitely often, so there are
infinitely many n with a,a,-; < 0, or, by (7.4.6), with a, ¢, < 0. Let E be the set of
n’s for which a,,c, < 0. Fornin E,

b} < b* —4ayc, = D.

Also 4|a,c,| = —4a,c, < D, so 4|a,| < 4|la,cy| < D and 4|c,| < 4|a,c,| £ D,
hence fornin E,
4lay| + 4|ca| + b2 < 3D.

Since there are only finitely many integers a, b, c¢ satisfying this last inequality, we
conclude there are only finitely many distinct polynomials f,(x) for n in E. Since
each polynomial has at most two roots, and E is infinite, there are at least two integers
n and n + m with x, = x,4,. As we saw above, this forces the g’s to eventually
repeat.

We now turn to the proof of the converse. A linear fractional transformation is a
map of the form

ax+b
= —, 7.4.8
cx+d ( )
for some integers a, b, ¢, and d. By Exercise 7.17, if x and y are related by
1
Yy=4qo+ ] ) (7.4.9)
+
q1 1
+
q2 1
+
q3 . 1
—
1
qm + =
X

then they are related by (7.4.8), for some integers a, b, ¢, and d.
To prove the converse of the Theorem, if the continued fraction for x repeats
eventually, then for some m and n,
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1
Xn =qn + 1
dn+1 t 1
dn+2 t 1
qn+3 T . 1
.+
1
dn+m-1t+ —
n
But this implies

ax, +b

Xp = R

" exp+d

for integer coefficients a, b, ¢, d. Multiplying out leads to a quadratic, hence x,, is
a quadratic irrational, which implies x is a quadratic irrational. This completes the
proof. O

Exercises

Exercise 7.1 Prove (7.1.14), (7.1.15), (7.1.16).
Exercise 7.2 Prove (4.5.3), (4.5.4), and Theorems 4.5.3 and 4.5.4 for a, b, c rational.

Exercise 7.3 Show that x given by the quadratic formula (7.3.4) solves the quadratic
equation (7.3.1).

Exercise 7.4 Show x is a quadratic irrational if and only if x satisfies (7.3.1) for
some integers a, b, ¢ with b? —4ac # 0.

Exercise 7.5 If D is a squarefree integer, then D is not the square of a rational.

Exercise 7.6 The norm of a quadratic irrational x = a + bVD is N(x) = a® — b*D.
Show that N(xy) = N(x)N(y).

Exercise 7.7 Let x be a quadratic irrational with positive discriminant. Show that
x > 0 if and only if —x < 0.

Exercise 7.8 Let D > 1. Using only Figure 7.5, show VD < D.

Exercise 7.9 Add the special methods __eq__, __str__, __add__, __sub__,
__mul__ to quadirr. These methods should raise an error when the discriminants
are not the same.

Exercise 7.10 Add the special method __pow__ to quadirr that returns x**e (Ex-
ercise 6.8).
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Exercise 7.11 Add the special methods 1t , __gt__, __le__, __ge__ to

quadirr to return the order operators <, >, <, >. These methods should raise

an error when the discriminants are not the same or not positive.

Exercise 7.12 Write a recursive function sqrt(a,n) that computes the square root
of a > 0 by applying
1
x'== (x + 2)

2 X
n times.

Exercise 7.13 Derive (7.3.2) by induction.
Exercise 7.14 Derive (7.4.6) by induction.
Exercise 7.15 Derive (7.4.7) by induction.

Exercise 7.16 If y = f(x) and y = g(x) are linear fractional transformations (7.4.8),
so is their composition (§3.5). Show that y = g + x and y = 1/x are linear fractional
transformations.

Exercise 7.17 If x and y are related by (7.4.9), then x and y are related by (7.4.8)
(use the previous exercise and induction).



Appendix A

In this appendix, we establish the uniqueness of Z, Z,,, and Q. We introduce rings
and fields, objects that are at the basis of many areas of mathematics, and we show

1. Z is the unique minimal ring in which zero is neither positive nor negative.
2. Z,, is the unique minimal ring in which zero is either positive or negative.
3. Qs the unique minimal field in which zero is neither positive nor negative.
4. Z, is the unique minimal field in which zero is either positive or negative.

A ring is a set equipped with addition and multiplication operations satisfying
1. additive commutativity (4.1.1)

. additive associativity (4.1.2)

. existence of zero (4.1.3)

. multiplicative commutativity (4.3.1)

2

3

4. existence of negatives (4.2.1)

5

6. multiplicative associativity (4.3.2)
7

. existence of one (4.3.3)
8. distributivity (4.4.1)

Thus a ring is a set equipped with addition and multiplication operations that agree
with (most of) our intuitive understanding of how numbers behave.

We only consider rings where zero is not one, to rule out the uninteresting case
7, (Exercise A.1).

A ring X is totally ordered if there is a subset X, the positive numbers in X, such
that with the negative numbers X~ being the negatives —X* of the positive numbers,
we have

129
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1. every number is either positive, negative, or zero,

2. zero is neither positive nor negative, (A0.1)
3. the sum of positive numbers is positive, o

4. the product of positive numbers is positive.

A ring is minimal if every number in the ring is a sum of ones (this is defined
precisely in the next section), or the negative of a sum of ones, or zero. Thus a
minimal ring is in some sense a smallest possible ring, as every number in the ring
is then the result of adding or subtracting ones (§4.5).

If a sum of ones is never zero, we say the ring has modulus zero. In §A.1, we
show there is essentially a unique minimal ring with modulus zero, the integers Z.

In a minimal ring X with modulus zero, if we define the positive numbers X* to
be the sums of ones, then it follows immediately from the definitions that X is totally
ordered. Thus Z is totally ordered.

The negation of (4.5.2) is!

zero is either positive or negative

If a ring satisfies this, then n1 = 0 for some positive integer n. The least such n is the
modulus of the ring.

In §A.2, we show there is essentially one minimal ring with modulus 7, for each
n > 1, the modular integers Z,,.

Note, because of the presence of the modulus n, we can’t even define Z, without
first studying and agreeing upon what Z is.

A field is a ring where

every nonzero number has a reciprocal.

A field is minimal if every number in the field is a ratio of sums of ones, or the
negative of such a ratio, or zero. Thus a minimal field is in some sense a smallest
possible field. In §A.3, we show there is essentially a unique minimal field with
modulus zero, the rationals Q.

In a minimal field X with modulus zero, if we define the positive numbers X* to
be the ratios of sums of ones, then it follows immediately from the definitions that
X" is totally ordered. Thus Q is totally ordered.

We also show there is essentially a unique minimal field with modulus p, Z,, if
p is prime, and no such field otherwise. In §B.1, we study the field Q(\/B), which is
not minimal.

! Since 0 = -0, this is the same as saying zero is both positive and negative.
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A.1 Uniqueness of Z

All the results derived in Chapter 4 depend only the axioms listed there. As such,
the results in Chapter 4 are valid for any minimal ring X with modulus zero.

Let X and Y be rings and suppose f is a map from X to Y (§3.5). We say f is a
ring map if f(1) = 1 and

Jx+x") = f(x) + f(x"), (A.1.D)

and
fxx’) = f(x)f(x'), (A.1.2)

for all x, x’ in X. Here the addition and multiplication on the left are taken in X,
while the addition and multiplication on the right are taken in Y. In other words, a
map f is aring map if f maps numbers in X to numbers in Y in a manner consistent
with the addition and multiplication operations in X and Y. If f is also bijective
(§3.5), then f is an isomorphism. If rings X and Y share an isomorphism, we say X
and Y are isomorphic. Isomorphic rings are the same ring except for the relabelling
x> f(x).

If X and Y are isomorphic rings, then they have the same modulus (Exercise A.8).

If two rings have the same modulus, they need not be isomorphic; they may be
vastly different. However, if the two rings are both minimal, Theorems A.1.2 and
A.2.1 guarantee they are isomorphic.

If f is a ring map from X to Y, by (A.1.1), f(x) = f(x +0) = f(x) + f(0), so
f(0) = 0. Moreover, by choosing x” = —x in (A.1.1), a ring map satisfies

f(=x) = =f(x), x in X. (A.1.3)

A subset S of aring X is inductive if S contains 1 and contains x + 1 whenever it
contains x.

If X is any ring, the set of positive numbers X™ is the smallest inductive subset of
X. The set of negative numbers X~ is the set of negatives of the positive numbers in
X. X is minimal if X is the union of X*, X~ and zero, and X has modulus zero if zero
is neither positive nor negative. As in Chapter 4, having modulus zero is equivalent
to X*, X~ and zero being disjoint.

The main result is that, up to isomorphism, there is only one minimal ring with
modulus zero. The key step towards the main result, that there is a unique ring map
f from Z to any ring X, is almost obvious, since we have no choice but to set
fM) =1, fA+1)= f(1)+ f(1), etc. Minimality and modulus zero then guarantee
f is well-defined.

For the actual proof of the key step, we follow our nose through the definition of
amap (§3.5). Here is the key step.

Theorem A.1.1 Let X be a minimal ring with modulus zero and let Y be any ring.
Then there is a unique ring map f from X to'Y.
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Proof The goal of the proof is to exhibit a ring map f between X and Y. Since X™,
X~ and zero are disjoint and their union is X, we may define f on each of X* and
X~ separately, and set f(0) = 0. By (A.1.3), f is determined on X~ by what it does
on X*. Therefore we begin by constructing a map f from X* to Y.

We say arelation f (§3.5) between X* and Y is inductive if

1. f contains (1, 1), and
2. f contains (x + 1, y + 1) whenever f contains (x, y).

Here (1, 1) is the ordered pair consisting of 1 in X together with 1 in Y. Similarly, in
the ordered pair (x + 1, y + 1), the + on the left is in X, and the + on the rightisin Y.

Let f be the smallest inductive relation between X* and Y. The plan is to show f
is a map from X* to Y satisfying (A.1.1) and (A.1.2) for all x, x” in X*.

Step 1

The source of f is X*: To see this, we show the source of f is inductive. Since (1, 1)
isin f, 1 is in the source of g. If x is in the source of f, pick y in Y such that (x, y)
is in f. Since f is inductive, (x + 1,y + 1) is in f, so x + 1 is in the source of f,
hence the source of f is inductive. Since X* is the smallest inductive subset of X,
the source of f equals X™.

Step 2

f is a map from X* to Y: For each x in X, let A, be the set of y in Y related to x
under f. For f to be a map, corresponding to each x in X™, there must be only one
y in Y related to x under f, in other words, we must show |A,| = 1 for all x in X.

Let A be the set of x in X+ for which this is not so, so let A be the set of x in
X* such that |A,| > 1. We claim A is empty. If not, by the well-ordering principle
(Theorem 4.7.1), let @ = min A. There are two cases,a = 1 ora > 1.

Ifa=1,thereisac # 1 with (a,c) in f.If a > 1, then a — 1 is not in A, so there
is a unique number in Y, call it b, with (a — 1, b) in f. Since f is inductive, (a, b+ 1)
is in f. Since a is in A, there is a ¢ with (a, ¢) in f and ¢ # b + 1. Thus, in either of
the cases ¢ = 1 or a > 1, we made a specific choice of ¢ with (a, c) in f.

Let g be f with (@, c) removed, g = f — {(a,c)}. Then g is a relation between
X* and Y that is strictly smaller than f. We show g is an inductive relation. First,
(1,1) is in g, since we didn’t remove it. Next, if (x, y) isin g, then (x + 1,y + 1) is
in f, because f is inductiveand g C f. If x + 1 # a, then (x + I,y + 1) is in g. If
x+1=a,thena>1landx =a—1and ymustequal b,hence y+1=>b+1 # ¢, so
(x+1,y+1)=(a,b+1)ising.

This shows (x + 1, y + 1) is in g in either case, so g is inductive. But f was chosen
to be the smallest inductive relation between X* and Y. This contradiction shows A
is empty, hence f is a map from X* to Y.
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Step 3

f(1) =1and f(x + 1) = f(x) + 1 for x in X*: This follows from the definition of f
in Step 0, since f is a map and y = f(x) is shorthand for (x, y) in f.

Step 4

(A.1.1) holds for all x, x" in X*: Let S be the set of x in X* such that (A.1.1) holds
for all x” in X*. By the previous step, 1 is in S. If x is in S, then (A.1.1) holds. If x’
isin X", thenx’+1=1+x"isin X', so

f((x+ D +x) = flx+ (1 +x7)) = fx) + (1 +x7)
= f) + )+ f(D) = flx+ 1)+ f(x),

so x + 1 is in S. Hence § is inductive. Thus § = X*, which is the same as saying
(A.1.1) holds for all x, x"in X™.

Step 5

(A.1.2) holds for all x, x’ in X*: Let S be the set of x in X* such that (A.1.2) holds
for all x” in X*. Since f(1) = 1, 1isin S. If x is in S, then (A.1.2) holds. By Step 4,

F((x+ Dx) = flaxx" +x7) = fxx") + f(x7)
= )+ () = (f() + D) = fx+ D)

so x + 1 is in S. Hence S is inductive. Thus § = X™*, which is the same as saying
(A.1.2) holds for all x, x” in X*.

Step 6

Summarizing, f is a map from X* to Y satisfying (A.1.1) and (A.1.2) for all x,
x" in X*. Now enlarge f to a map between X and Y by defining f(0) = 0 and
f(x)=—=f(=x) for xin X~.

Step 7

(A.1.1) holds for all x, x" in X: If x > 0 and x” > 0, this is Step 4. If x > 0 and
x" < 0, there are three cases. First, if x + x” > 0, then by Step 4,

() = flx+x)+ f(=x")

Hence
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fx+x") = f(x) = f(=x) = f(x) + f(x)).
Second, if x + x” <0,
fx+x)==f(=x=x") = = f(=x) = f(=x) = f(x) + f(x").

Third, if x + x’ =0,

Ja+x)=0=f(x) = f(x) = f(x) + f(=x) = f(x) + f(x).

Thus (A.1.1) is valid if x > O and x” < 0. If x < O and x" < 0O, by Step 4,

Ja+x) ==f=x=x") = =(f(=x) + f(=x)) = f(x) + f(x").

If either of x or x” is 0, (A.1.1) is immediate. This establishes (A.1.1) for all x and
x"in X.

Step 8

(A.1.2) holds for all x, x" in X: If x > 0 and x” > 0, this is Step 5. If x > 0 and
x" < 0, then xx’ < 0, so by Step 5, f(xx’) equals
—f(=xx") = = f(x(=x") = = f(x) f(=x") = f(xX) f(x).

If x < 0and x” <0, then xx” = (—x)(=x") > 0, so by Step 5, f(xx") equals

J((=0)(=x") = f(=0)f(=x") = (= fO)=F(x) = F(x) f(x).

When either of x or x” is 0, (A.1.2) is immediate. This establishes (A.1.2) for all x
and x’ in X.

Step 9

f is the unique ring map from X to Y. If g is another ring map from X to Y, let S be
the set of x in X* satisfying f(x) = g(x). Since f, g are ring maps, (1) =1 = g(1).
Since f, g are ring maps, S is inductive, hence S = X*. Thus f(x) = g(x) for all x
in X*. If x is in X~, then f(x) = —f(—x) = —g(-x) = g(x), so f(x) = g(x) for all x
in X~. Since f(0) = g(0), we conclude f = g. O

Now we can prove

Theorem A.1.2 Let X and Y be minimal rings with modulus zero. Then X and Y are
isomorphic.

Proof By Theorem A.1.1, there is a unique ring map f from X to Y and a unique
ring map g from Y to X. Let h(x) = g(f(x)) be their composition. Then h is a ring
map from X to X, since
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h(x +x) = g(f(x + x7)) = g(f(x) + f(x"))
= g(f(x)) + g(f(x)) = h(x) + h(x")

and

h(xx') = g(f(xx")) = g(f(x)f(x")) = g(f(x))g(f(x")) = h(x)h(x').

But the identity k(x) = x is a ring map from X to X. By uniqueness, & = k, so
g(f(x)) = x for all x in X. Similarly, by switching the roles of f and g, f(g(x)) = x
for all x in X. Thus g is the inverse of f, hence f is bijective. We conclude X and Y
are isomorphic. O

By this theorem, it is meaningful to define Z as the unique minimal ring with
modulus zero. Since all minimal rings with modulus zero are isomorphic, we may
refer to any of them as Z. With this understood, Theorem A.1.1 can be rephrased as

Theorem A.1.3 If X is any ring, there is a unique ring map f from Z to X.

If X is any ring, then f(n) is what is meant by “the sum of » ones in X”. If we
denote the sum of # ones in X by nl, since f is a ring map, we have

(m+n)l =ml +nl, (mn)l = (m1)(nl), m,nin Z. (A.1.4)

Let X be any ring and let f be the unique ring map from Z to X. Then f is
not injective if and only if m1 = k1 for some integers k and m, which implies
(k —m)1 =0, or zero in X is positive. Conversely, if zero in X is positive, then f is
not injective. Thus f is not injective if and only if X has modulus » for some n # 0.

On the other hand, if f is injective, then the target f(Z) is an isomorphic copy of
Z. We conclude every ring with modulus zero contains a copy of Z, given by

f(Z)={nl:ninZ}.

The technique in the proof of Theorem A.1.1 can be used for many other cases,
as follows.

Theorem A.1.4 Let X be any set, let a be an element of X, and let h be a map from
XXX toX. If f is amap from Z* to X, then there is a unique map g : L7 — X
satisfying

g(1) =aq, gn+1)=h(gn), f(n+1)), n>1. (A.1.5)

Proof Mimicking the proof of Theorem A.1.1, we say a relation g between Z* and
X is inductive if (1,a) isin g, and (n+ 1, h(b, f(n+1))) is in g whenever (n, b) isin g.
Then exactly as in that proof, one shows the smallest inductive relation between Z™*
and X is a map g from Z* to X satisfying (A.1.5), and that such a map is unique. O

If we choose X = Z and h(x, y) = xa for x, y in Z (here f doesn’t enter), then g
is the power map,
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g(1) =a, gn+1)=gma, n=1.

Recall (§4.7) we denote the power map as g(n) = a”.
If we choose X = Z, f the power map, and h(x, y) = x+y, then g is the geometric
sum map,
g)=1+aq, g+ =g +d"", n>1.

Recall (§4.7) we denote the geometric sum map as g(n) =a" +---+a+ 1.

A.2 Uniqueness of Z,,

In this section, we establish

Theorem A.2.1 Let n > 1. If X and Y are minimal rings with modulus n, then X
and Y are isomorphic.

Proof Define a relation f between X and Y by
f={(kl,kl): kinZ}.

Here (k1, k1) is the ordered pair consisting of k ones in X together with k ones in
Y.If k1 = ml in X, then by (A.1.4), (k —m)1 = 0in X. By Exercise A.2, n divides
k —m, so (k —m) = nt. Hence

k1 —ml = (k—m)l = (n)l = (k1)(nl) = 0

inY. Thus f is a map from X to Y satisfying f(k1) = k1 forall k in Z. By (A.1.4), f
is a ring map. Repeating the same argument with X and Y switched, we have a ring
map g from Y to X satisfying g(k1) = k1 for k in Z. Thus g is the inverse of f, and
we conclude f is bijective. Hence X and Y are isomorphic. O

By this theorem, it is meaningful to define Z,, as the unique minimal ring with
modulus 7. Since all minimal rings with modulus n are isomorphic, we refer to any
of them as Z,,.

Let X be any ring and let f be the unique ring map from Z to X. If X has modulus
n, then f is not injective, and the target has n elements.

We conclude every ring with modulus n contains a copy of Z,,, given by

f(Z)={kl: kinZ}.

A.3 Uniqueness of Q

Let X be a field with modulus zero. From §A.1, X contains a copy of the integers Z.
Analogously to what was done in Chapter 4, let X* be the set of ratios a/b of positive



A.3 Uniqueness of Q 137

integers a, b. These are the positive numbers in X. Let X~ be the negative numbers,
the negatives of the positive numbers. With this understood, a field is minimal if
every number is either positive, negative, or zero.

If f is aring map from a field X to a field Y, then by choosing x” = 1/x in (A.1.2),
we have f(1/x) = 1/ f(x) whenever x # 0 and f(x) # 0. Thus there is no need for a
separate definition of “field map”.

A minimal field is not a minimal ring. Nevertheless, we have

Theorem A.3.1 Let X be a minimal field with modulus zero and let Y be any field
with modulus zero. Then there is a unique ring map f from X to'Y.

Proof Since X is a field, X is a ring. Since X has modulus zero, there is a copy of
Z in X. By Theorem A.1.3, there is a unique ring map f from Z to Y. We want to
extend f from Z to all of X. Since Y has modulus zero, f(m) # 0 when m # 0.
Define the relation F between X and Y by

F ={(n/m, f(n)/ f(m)) : n,min Z,m # 0}.

Since X is a minimal field, the source of Fis X. If a, b # 0, ¢, d # 0 are in Z
with a/b = c¢/d, then ad = bc, so f(a)f(d) = f(ad) = f(bc) = f(b)f(c), hence
f(@)/f(b) = f(c)/f(d). Thus F is a map from X to Y, and F(a/b) = f(a)/ f(b) for
a,binZ. Now fora, b, c,d in Z,

a ¢\ ad +bc\  flad + bc)
R e R
_f@f@+ fOF©)  fl@) ) ay . (¢
T )@ _f(b)+f(d)_F(b)+F(d)

and

a c ac (ac)
F(Z'E) =F(ﬁ) - ]J:(bd)
Cf@f©  f@) f© . ay (e
- o7~ 70 7@ -G F(E)

b
so F is a ring map. Since F(a/b) = f(a)/f(b) for a, b in Z and f is uniquely
determined on Z, F is uniquely determined. O

Asa consequence,

Theorem A.3.2 Let X and Y be minimal fields with modulus zero. Then X and Y are
isomorphic.

Proof The proof is identical to that of Theorem A.1.2. O

By this theorem, it is meaningful to define Q as the unique minimal field with
modulus zero. Since all minimal fields with modulus zero are isomorphic, we refer
to any of them as Q. With this understood, Theorem A.3.1 can be rephrased as
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Theorem A.3.3 If X is any field with modulus zero, there is a unique ring map f
from Q to X.

Let X be any field with modulus zero and let f be the unique ring map from Q to
X. By Exercise A.9, f is injective.
We conclude every field with modulus zero contains a copy of Q, given by

f(Q)={nl/ml :n,minZ}.
We also have

Theorem A.3.4 Let X be a minimal field with modulus p. Then p is prime and X is
isomorphic to Zp.

Proof 1f p is not prime, let p = ab be a nontrivial decomposition. Then (al)(b1) =
(ab)l = pl = 0, but al # 0 # bl. Since X is a field, 1/al exists, hence bl =
(1/al)albl = 0 contradicting b1 # 0. Thus p is prime. From the previous section,
X contains Z,,. By Theorem 6.4.3, Z,, is a field. Since X is a minimal field X = Z,,.

If X is a field with modulus p, then the unique ring map Z — X does not extend to
Q. It extends only to the portion Z,) of Q consisting of rationals whose denominator
is not divisible by p (Exercise A.11).

Exercises

Exercise A.1 If X is a ring where 0 = 1, then the set X consists of one number.

Exercise A.2 Let X be any ring and suppose nl = 0 for some positive integer n. If n
is the least positive integer satisfying nl = 0, and & is any integer satisfying k1 = 0,
use the division algorithm to show »n divides k.

Exercise A.3 Show that the modulus of a ring is either zero or is prime.

Exercise A.4 If a ring X has 2 or 3 numbers, then X is isomorphic to Z, or Z3
respectively.

Exercise A.5 If X and Y are rings, then defining (x, y) + (x’,y") = (x + x",y + y’)
and (x, y)(x’, y") = (xx’, yy’) makes X X Y aring.

Exercise A.6 Show that Z, X Z, is not a minimal ring. Show the modulus of Z; X Z,
is 2. While Z, x Z, and Z4 both have 4 numbers each, conclude Z, X Z, and Z, are
not isomorphic rings.

Exercise A.7 Let X be aring with modulus 7, and let f be the unique ring map from
Z to X. Show that the target f(Z) is isomorphic to Z,. Conclude every ring with
modulus n contains a copy of L.



A.3 Uniqueness of Q 139
Exercise A.8 If X and Y are isomorphic rings, then they have the same modulus.

Exercise A.9 If X is a field with modulus zero and f is the unique ring map from Q
to X, then f is injective.

Exercise A.10 Let p be a prime and let Z,,) denote the rationals m/n where p does
not divide n. Show that the sum and product of rationals in Z,) are in Z,). Which
rationals in Z,) have reciprocals in Z,)?

Exercise A.11 Let p be a prime and let Z,,) denote the rationals m/n where p does
not divide n. If X is any field with modulus p, there is a unique ring map f from
Z)to X.






Appendix B

B.1 Quadratic Irrationals

In this section we build the set Q(VD) of quadratic irrationals as a field with modulus
zero. As such, Q(\/B) contains Q, as it should, but it is not a minimal field. We also
show, when D > 0, Q(VD) is totally ordered (A.0.1).

In §7.3, we defined a quadratic irrational as a number of the form a + b\/ﬁ, where
D is a squarefree integer. Strictly speaking, this definition uses the number VD,
whose existence lies outside the realm of Q. How then do we approach quadratic
irrationals, while remaining within the algebra of Q?

The answer is to define Q(VD) to be the set Q x Q (§3.5) of ordered pairs
x = (a, b) of rationals, and define, for y = (c, d), addition and multiplication in
Q(VD) by

x+y=(ab)+(c,d)=(a+b,c+d),

and

xy =(a,b) - (c,d) = (ac + bdD, ad + bc).

Since these definitions involve only rationals, one can check that with these operations
and 0 = (0,0) and 1 = (1, 0), Q(VD) is a ring. Moreover, since a> — b2D is not zero
for any (a, b) except (0, 0), reciprocals are defined by

| a -b
x (ab) \a®2-b*D a?>-pD)’

(a,b) # (0,0),

turning Q(VD) into a field (Exercise B.1).

This is valid for any squarefree integer D. The quadratic irrationals corresponding
to D = —1 are the Gaussian rationals. The quadratic irrationals corresponding to
D = -3 are the Eisenstein rationals. The quadratic irrationals corresponding to
D =5 are the Dirichlet rationals.

With these definitions, the computations in §7.3 are valid. Moreover sums and
products of quadratic irrationals of the form (a, 0) behave the same as sums and
products of rationals, so Q(VD) has modulus zero.

141
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Given x = (a, b), let N(x) = a®> — b>D be the norm of x. Then (Exercise 7.6)
N(xy) = N(x)N(y). (B.1.1)

A quadratic irrational x = (a, b) is positive if (a, b) is of the form (+, +), (+,0),
(0,4), or a > 0 and N(x) > 0, or a < 0 and N(x) < 0. The negative quadratic
irrationals are the negatives of the positive quadratic irrationals. Then positive and
negative quadratic irrationals are defined following the table in Figure B.1, where
the entries +N(x) in the table means x = (a, b) has the same sign as N(x), when
a > 0and b < 0, and the same sign as —N(x), when a < 0 and b > 0. (Recall
N(x) = a*> — Db? # 0 for x nonzero since the discriminant D is squarefree.)

With D > 0 and the above definition of positivity, the goal is to show Q(VD) is
totally ordered (A.0.1).

It follows immediately from Figure B. 1 that every number is positive, or negative,
or zero, and zero is neither positive nor negative.

a —_
b + 0
+ + + -N(x)
0 + 0 -
= N(x) — —

Fig. B.1 Sign of x = (a, b).

It remains to establish the sum and product of positive quadratic irrationals are
positive. If these were to hold, then D = (+VD)? would have to be positive. Thus it
is necessary that D > 0 for Q(VD) to be totally ordered.

Let x = (a, b) and y = (c, d) be positive quadratic irrationals. We show

x+y=(a+c,b+d)

is a positive quadratic irrational.

From Figure B.1, there are five possibilities for positive x = (a, b), and five for
positive y = (c, d). Hence there are 25 possibilities to consider. Since addition is
commutative, the number of possibilities is cut to 15. These we tabulate in Figure
B.2.

The positivity of x + y in each of the blue cases follows immediately from Figure
B.1.

For the top left green case, x = (@, b) = (+,—), y = (¢,d) = (+,+),and x + y =
(a+c¢,b+d) = (++), where + is the signof b+ d. If b+ d > 0, then x + y is
positive. If b+ d < 0, we must show N(x + y) > 0. To check this, note b < 0 implies
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W@l @ (+,0) ©,+) - | &
(+ +) (+ +) . . « .
(+,0) (+, +) (+,0) * * %
O, +) (+, +) (+ +) 0, +) * %
@) | & | &0 | @ | o .
O | @D | &0 | En | & | @

Fig. B.2 Addition of positive quadratic irrationals.

0>b+d>bsob>>(b+d)> Alsoa+c > a > 0implies (a + ¢)> > a>. Hence
Nx+y)=(a+cP?~(b+d)?D>a*~b*D=N(x) >0,

establishing the positivity of x + y. The same argument is valid for the other two
green cases in the same row. For the bottom green cases, it’s the same argument with
the inequalities reversed.

For the yellow cases, bd > 0, ac > 0, and N(x), N(y) share the same sign. We
must show N(x + y) has the same sign as N(x). If N(x) > 0 and N(y) > 0, then
(ac)* = a*c* > Db*Dd* = D*(bd)?, or ac > Dbd. Similarly, if N(x) < 0 and
N(y) < 0, then ac < Dbd. Since

N(x +y) = N(x) + 2(ac — bdD) + N(y),

the sign of N(x + y) is positive in the first case and negative in the second case,
establishing the positivity of x + y.

For the red case, a < 0, b > 0,¢ > 0, d < 0, and a®> < Db?, ¢ > Dd?. These
imply ad > 0, bc > 0, and

a’d* < Db*d? < 2P,

hence
0 < ad < bc. (B.1.2)

For the red case, there are nine possibilities, arranged in Figure B.3. The three
positive red cases in Figure B.3 follow from Figure B.2.

Ifa+c<O0andb+d <0,then0 <c¢ < —-aand0 < b < —d so ¢ < a? and
b* < d?. But this implies a>d” > b*c?, contradicting (B.1.2). This rules out four red
cases in Figure B.3.
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b+d _
a+c + 0

+ + + ?

0 +

Fig. B.3 Red case in Figure B.2.

Ifx+y=(a+cb+d)=(+-), thenby (B.1.2),

a b
1+—->1+->0,
c d

which leads to

2 2 2
(a+c)2=c2(l+g) >c2(1+§) >Dd2(1+§) = D(b+d)*.

c

Ifx+y=(a+cb+d)=(-+),thenby (B.1.2),

1+£l>1+£>0,
b a

which leads to

2 d\’ d\’
(a+c)2=a2(l+§) <a2(]+5) <Db2(1+5) = D(b+d).

This completes the ? cases in Figure B.3, which completes the analysis of the red
case in Figure B.2.

Thus the sum of positive quadratic irrationals is positive. We turn now to multi-
plication.

Let x = (a, b) and y = (c, d) be positive quadratic irrationals. We show

xy = (ac + bdD, ad + bc)

is a positive quadratic irrational.

From Figure B.1, there are five possibilities for positive x = (a, b), and five for
positive y = (¢, d). Hence there are 25 possibilities to consider. Since multiplication
is commutative, the number of possibilities is cut to 15. These we tabulate in Figure
B.4.

By Figure B.1, xy is positive for each of the blue cases.
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W@l @ (+,0) 0+ | o | 5
(+ +) (+ +) * R . .
(+,0) (+, +) (+,0) * * %
O, +) (+, +) 0, +) (+,0) * %
®) | @D | w0 | @H | ®o x
O | @D | EH | w0 | Go | o

Fig. B.4 Multiplication of positive quadratic irrationals.

For each of the green cases, N(x) is positive if a > 0, and negative otherwise,
and N(y) is positive if ¢ > 0, and negative otherwise. By (B.1.1), we know the sign
of N(xy), and we know the sign of the rational part of xy. Since the sign of xy is the
product of the sign of ac + bdD and the sign of N(xy), by Figure B.5, xy is positive.

For the red cases, we have x (not a) is positive, and

y = (C’d) = (+’+) = (+’O)+(O»+) =Y1+y
is the sum of positive numbers y; and y,. By distributivity,
Xy =xy1+ xys,

and each term on the right side is positive by one of the green cases. Since the sum
of positive numbers is positive, xy is positive.

Exercises

Exercise B.1 Let D be a squarefree integer. Show that Q(VD) is a field.
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x=(a,b) | y=(c,d) N(x) N(y) N(xy) ac + bdD
(+ ) (+,0) + + + +
(+-) ©.+) + - - -
(+ -) (+ -) + + + +
(=) (+.0) - ¥ - -
(= +) 0,+) - - + +
(=4 (+.-) - + - -
(=4 (= +) - - + +

Green cases in Figure B 4.




Appendix C

In this appendix, Morley’s Theorem is presented following the recent proof in [5].
NOT COMPLETE

C.1 Morley’s Theorem

class point:
# determined by its x and y coordinates

def __init__(P,x,y):
P.x = x
Py=y

def __add__(P,v):
# returns the translate P + v of point P by vector v
return point(P.x + v.Xx,P.y + v.y)

def __sub__(P,Q:
# returns v satisfying P+ v=Q, v=Q - P
return vector(P.x - Q.x,P.y - Q.y)

def rotate(P,Q,angle):
# rotates P about Q
return P + (Q-P).rotate(angle)

class vector:

# determined by x and y coordinates
# vectors based at origin

147
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def __init__(v,x,y):
V.X
vV.y =Yy

= X

def __mul__(u,v):
# dot product
return u.x*v.x + u.y*v.y

def rotate(v,angle):
#rotation of vector about origin
X =
y:

S

V.X

vV.y
math.sin(angle)

¢ = math.cos(angle)
return vector(x*c - y*s,x*s + y*c)

def angle(u,v):
return math.acos(u*v/math.sqrt((u*uw)*(v*v)))

def draw(P,Q):
# draws segment joining points P, Q

Ptuple
Qtuple

= (P.x,P.y)
= (Q.x,Q.y)

return line([Ptuple,Qtuple],axes=False)

def intersect(linel,line2):
#intersection of lines

P,w)
R,v)
Q=P
S =R

+
+

linel # linel passing through P, parallel to u
line2

u # another point on linel

v

import numpy as np

A

np.array([[Q.x-P.x,R.x-S.x],[Q.y-P.y,R.y-S.y1])

v = np.array([R.x-P.x,R.y-P.y])
t,s = np.linalg.solve(A,v)
return point((1-t)*P.x+t*Q.x, (1-t)*P.y+t*Q.y)

def triangle(P,Q,R):

Ptuple
Qtuple
Rtuple

return

@interact

= (P.x,P.y)
= (Q.x,Q.y¥)
= (R.x,R.y)
polygon([Ptuple,Qtuple,Rtuple])

# assumes SageMath



C.1 Morley’s Theorem

def morley(x=7,y=5): # coordinates of the third vertex
point(0,0) # the first two vertices are fixed
point(10,0)

A
B

C = point(x,y)
alpha = angle(C-A,B-A)/3
beta = angle(A-B,C-B)/3
gamma = angle(A-C,B-C)/3

u

v

P

u =

v =

Q

u

v

R

show (
draw(A,P)
draw(B,Q)
draw(C,R)
draw(A,B)

+
+
+

+

= (B-A).rotate(alpha)
= (A-B).rotate(-beta)
= intersect((A,u), (B,Vv))
(C-B) .rotate(beta)

= (B-C).rotate(-gamma)
= intersect((B,w), (C,v))
= (A-C).rotate(gamma)
= (C-A).rotate(-alpha)
= intersect((C,u), (A,V))

draw(B,P)
draw(C,Q)
draw(A,R)
draw(B,C)

+ triangle(P,Q,R)

+
+
+
+

draw(C,A)
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%, 14

* 13

‘k'.':’ 14

+, 13, 14

-, 13

/, 13

//, 13

1=2

==2

n>>, 24
__add__, 95
__div__, 111
__eq__, %
__ge__, 128
__gt__, 128
__init__,9%4
__le__, 128
_1t__, 128
__mul__, 95
__pow__, 111
__str__,9%
__sub__, 110
add, 48
append, 22
as_poly, 20
bin, 9

bool, 1,5
class, 93
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coeffs, 20

def, 23
dict, 57

elif, 23
else, 23
expand, 20
extend, 43

False, 1
float, 1,5
for, 24,53
Fraction, 116
function, 23

hex, 10

id, 2

if, 23

in, 24
int, 1, 8-10
is, 7
issubset, 48
issuperset, 48
iter, 52

keys, 57

len, 4, 21, 48, 59
list, 21

method, 94
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modint, 93
oct, 8

pop, 86
quadirr, 121

range, 23

remove, 86
replace, 18
return, 24

self, 94

set, 48
str, 1,6

True, 1
tuple, 59
type, 1,2

values, 57
var, 19

while, 33

yield, 33, 51
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Symbols

nl, 32 ¢, 84
p*, 110
a,, 91
|x], 71
lal,, 106 Q. 113
Q*, 115
|x], 116 Q115
g Q(VD), 141
(_), 106
V=1, 101
n
,37
[k]q Z 27
[n],, 36
Z,,97
(n) . Z,.87
k)’ Z, 65
7", 69
,35 7,69
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absolute value, 71
addition

of ints, 13

of tuples, 60

of lists, 22

of strings, 14
alternating, 30
argument, 23
attribute, 93

Babylonian method, 119
bijective, 62

binary number, 9
binomial, 26

binomial coeflicient, 27
binomial theorem, 27
bit, 11

byte, 11

cancellation property, 70, 97
cardinality, 47, 62
code

block, 23

body, 23

header, 23, 31

indented, 24

recursive, 32
Collatz algorithm, 43
common divisor, 81
composite, 78

composition, 61
concatenation, 14
congruence, 91
continued fraction, 123
infinite, 123
periodic, 123
cryptography, 102
public key, 103
symmetric key, 102

degree, 20

diagonal, 61
discriminant, 120
divides, 77

divisible, 77

division algorithm, 79
dot notation, 94

element, 47
elementary symmetric polynomials,
35
euclidean algorithm, 80
Euler
identity, 42
Euler’s
¢-function, 84
V-1 theorem, 102
Fermat theorem, 100
identity, 42

factor, 77
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factorial, 32 IPv4 address, 16
factoring, 78 irrational
Fermat part, 120
little theorem, 100 irrationality of V2,118
prime, 85, 104 isomorphism, 131
Fibonacci sequence, 23 iterable, 53
field, 130 iterator, 52
minimal, 137
floor, 116 key
floor division, 14 private, 103
function, 6 public, 103
fundamental theorem of arithmetic,
33 Legendre symbol, 106
linear
Gauss combination, 81
g-binomial theorem, 41 fractional transformation, 126
quadratic reciprocity, 107 loop
gcd, 81 for, 24
generator, 51 while, 33
hardware address, 16 map, 61
hex, 10 bijective, 62
hexadecimal number, 10 composition, 61
HTML colors, 12 identity, 61
injective, 61
identity, 2, 61 inverse, 62
immutable, 2 ring, 131
inclusion-exclusion principle, 55 surjective, 61
increment, 24 memoization, 25
indent, 24 Mersenne prime, 85
indentation, 24 minimal
inductive, 73, 131 field, 137
relation, 132 ring, 131
set, 131 mod n, 92
infinite product, 42 modular
injective, 61 arithmetic, 87
instance, 93 modulus
instantiation, 93 n, 130
integers, 1, 65 zero, 130, 131
axioms, 65 multiple, 77
modular, 66 multiplication
negative, 69 notation, 8
negative of, 70 mutable, 2
positive, 69
reciprocal, 72 negative

inverse, 62 integers, 69
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irrationals, 121
numbers, 131, 137
rationals, 115
newline character, 4
Newton’s
inequalities, 44
Theorem, 27
norm, 127, 142
number
binary, 9
decimal, 7
fractional part, 1
hexadecimal, 10
integer part, 1
octal, 8
real, 1

object, 2
identity, 2
immutable, 2
mutable, 2
type, 2
value, 2
octal number, 8
operator overloading, 15, 95
ordered pair, 59

parameter, 23
parity, 108
Pascal’s triangle, 29
reduced, 99
¢-function, 84
polynomial, 19, 20
positive
integers, 69
irrationals, 121
numbers, 131, 137
rationals, 115
powers
notation, 8
prime, 78
factorization, 78
product of sets, 60

g-binomial, 39
g-binomial coefficient, 37
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g-derivative, 35
g-factorial, 37
quadratic
equation, 117
formula, 120
irrational, 120
nonresidue, 105
reciprocity, 107
residue, 105
quote
double, 4
single, 4
triple, 4
quotient, 79

rational, 113
lowest form, 115
negative, 115
part, 120
positive, 115
reciprocal, 66, 90
recursive, 25, 32
relation, 60
relatively prime, 84
remainder, 79
residue, 88
ring, 129
map, 131
minimal, 130, 131
modulus n, 130
modulus zero, 131
RSA algorithm, 104
runtime, 4

set, 47
additivity, 51
cardinality, 47
complement, 50
comprehension, 49
difference, 50
disjoint, 54
distributivity, 50
empty, 48
finite, 51
inductive, 131
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infinite, 51 target, 61
intersection, 50 totally ordered, 129
nonempty, 48 typed
power, 49 dynamically, 3
sub-, 48 strongly, 2
super-, 48
union, 49 unit, 73, 96
source, 61
squarefree, 120
string, 4 value, 2
multi-line, 4
subscriptable, 51 well-ordering principle, 75
sum of ones, 135 whitespace, 24

surjective, 61 Wilson’s theorem, 99
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