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Preface

As is well-known, calculus in the complex plane, more often known as complex
analysis, is a rich subject, with thousands of interesting and applicable results,
developed over the last two centuries, and with progress continuing at the forefront
of research today.

The modest goal of this textbook is to provide both the necessary background,
and the core few dozen results, enough to appreciate the richness of the subject.

There are many, many excellent books on this subject, so why another book? In
our case, we needed a source that included precalculus material, and also arrived
quickly at the core results in as elementary a manner as possible.

Historically, complex numbers first appeared as murky algebraic quantities. As is
well-known, these quantities were only fully accepted after they were interpreted as
points in the plane.

In chapter 1, we reverse the historical development, and show the arithmetic
operations — addition, subtraction, multiplication, and division — can be defined
directly on points in the plane. By this, we mean exhibiting the arithmetic opera-
tions as the result of synthetic [4] geometric constructions, that lead to the known
coordinate formulas. In particular, complex multiplication and division appear as
consequences of angle stacking.

Ironically, Descartes [2], who in 1637 coined the term “imaginary”, and dis-
covered the correspondence between points in the plane and pairs of real numbers,
missed1 the fact that points within his cartesian plane are quantities possessing an
arithmetic, i.e. they are numbers. Two hundred years later, complex numbers were
firmly embedded in the plane, and in 1831 Gauss ended the confusion, saying [3]

If one formerly contemplated this subject from a false point of view and therefore found a
mysterious darkness, this is in large part attributable to clumsy terminology. Had one not
called +1, −1,

√
−1 positive, negative, or imaginary (or even impossible) units, but instead,

say, direct, inverse, or lateral units, then there could scarcely have been talk of such darkness.

Because of the connection between complex numbers and angle stacking, the
basic results of trigonometry follow. This is carried out in Chapter 2, which covers

1 hindsight is 20/20.
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the fundamental theorem of trigonometry, the roots of unity, the binomial theorem,
and the core properties of real exponentials and real Taylor series.

Chapter 3 covers complex series and complex elementary functions, leading to
Euler’s identity.

Chapter 4 covers complex derivatives, the Cauchy-Riemann equation, differentia-
bility of complex power series, and the principal logarithm and the principal square
root.

Chapter 5 covers contour integration, winding numbers, and branches.
Chapter 6 covers Cauchy’s theorems in the standard sequence: First for rectan-

gles, then for disks, then for arbitrary open sets. Zeros, poles, and other standard
applications follow. This material I learned from Ahlfors [1].

Chapter 7 covers the residue theorem and examples of evaluation of real infinite
integrals.

Apart from the elementary topology of the real line, and the two-variable real
chain rule, the text is self-contained.

Omar Hijab
Spring 2022
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Chapter 1
The Complex Plane

In secondary school, one learns that an angle is the “space” between two intersecting
lines, and learns to assign a numerical value to each angle. In degrees, the value of
an angle varies between 0 and 360, while in radians, the value varies between 0 and
2𝜋. The assignment angle → value is not explained, or explained so badly, that the
use of 𝜋 is seemingly reduced to a choice of units, degrees or radians.

In fact, the angle-to-value assignment problem is so fundamental, it lies at the
heart of the meaning of measurement and number. In particular, this underlines the
fundamental nature of the absolute constant 𝜋. This problem, faced by the greeks,
was solved by Archimedes more than 2200 years ago by his bisection method.

The greeks understood how to assign quantities to intervals that are commensu-
rate: intervals that are multiples of a single base unit interval. The first indication of
the limitations of commensurability was the discovery, by the Pythagoreans, of

√
2

and the incommensurate nature of the length of the diagonal of the square.
Building upon this, it was Archimedes who realized that angle measure involved

the measurement of arcs on circles, quantities that are even more incommensurate
than

√
2, and that angle stacking reduced to addition of arclength.

Ultimately the key to these issues was recognized in the nineteenth century as the
completeness property1 of the real numbers. In effect, the first use of this property
was the Babylonian algorithm for

√
2, and the second was the Archimedes bisection

method for 𝜋.
Angle additivity is our intuitive understanding that the measure of stacked angles

is the sum of their measures. As we shall see, making this intuition precise leads
to multiplication and division of points in the plane. This exposes a surprising fact:
points in the plane possess an arithmetic, they behave like numbers. Because of this,
when endowed with this arithmetic, points in the plane are called complex numbers,
and the plane becomes the complex plane.

1 Every increasing bounded sequence of real numbers has a limit.
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2 1 The Complex Plane

1.1 Arithmetic of Points

In the plane, each point 𝑃 has a shadow. This is the triangle constructed by dropping
the perpendicular from 𝑃 to a reference line, and joining 𝑃 to a reference point 𝑂 on
the line, as in Figure 1.1.

𝑂

𝑃

𝑂

𝑃′

Fig. 1.1 Points 𝑃 and 𝑃′ and their shadows in the plane

In the cartesian plane, points 𝑃 = (𝑥, 𝑦) and 𝑃′ = (𝑥 ′, 𝑦′) are added by adding
their coordinates,

Addition of points

𝑃′′ = 𝑃 + 𝑃′ = (𝑥 + 𝑥 ′, 𝑦 + 𝑦′). (1.1)

This is the same as combining their shadows as in Figure 1.2. Addition of points
depends on the choice of reference line and reference point. In the cartesian plane,
this is not an issue, because these, the 𝑥-axis and the origin, are fixed at the outset.

𝑂

𝑃′′

Fig. 1.2 Adding 𝑃 and 𝑃′

For example, 𝑃 = (−3, 1) and 𝑄 = (−2,−2) yields

𝑃 +𝑄 = (−3, 1) + (2,−2) = (−3 + 2, 1 − 2) = (−1,−1) = 𝑅.

It is easy to check that this addition satisfies the commutative law
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𝑃 + 𝑃′ = 𝑃′ + 𝑃

and associative law
𝑃 + (𝑃′ + 𝑃′′) = (𝑃 + 𝑃′) + 𝑃′′.

Distance Formula

If 𝑃 = (𝑥, 𝑦) and 𝑃′ = (𝑥 ′, 𝑦′), then the distance between 𝑃 and 𝑃′ is

|𝑃 − 𝑃′ | =
√
(𝑥 − 𝑥 ′)2 + (𝑦 − 𝑦′)2.

The distance of a point 𝑃 = (𝑥, 𝑦) to the origin 𝑂 = (0, 0) is its absolute value
or radius

𝑟 = |𝑃 | = |𝑃 −𝑂 | =
√
𝑥2 + 𝑦2.

𝑥𝑂

𝑟

𝑃 = (𝑥, 𝑦)

𝑦

Fig. 1.3 The absolute value 𝑟 = |𝑃 | of 𝑃

Thus the absolute value of 𝑃 is the length of the hypotenuse of the shadow of 𝑃.
A point 𝑃 = (𝑥, 𝑦) in the plane may be stretched by stretching the shadow as in

Figure 1.4. This is dilation by 𝑡. Note when 𝑡 is negative, the shadow is also flipped.

𝑂

𝑃

𝑡𝑃

𝑂

𝑃

𝑡𝑃

Fig. 1.4 Dilation with 𝑡 = 2 and 𝑡 = −2/3
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Given a point 𝑃, the dilates of 𝑃 form a line passing through 𝑂 (Figure 1.5).

Dilation of points

𝑡𝑃 = (𝑡𝑥, 𝑡𝑦).

If 𝑡 and 𝑠 are real numbers, it is easy to check

𝑡 (𝑃 + 𝑃′) = 𝑡𝑃 + 𝑡𝑃′ and 𝑡 (𝑠𝑃) = (𝑡𝑠)𝑃.

Thus multiplying 𝑃 by 𝑠, and then multiplying the result by 𝑡, has the same effect as
multiplying 𝑃 by 𝑡𝑠, in a single step.

We set −𝑃 = (−1)𝑃, and define subtraction of points by

𝑃 −𝑄 = 𝑃 + (−𝑄).

This gives

Subtraction of points

𝑃′′ = 𝑃 − 𝑃′ = (𝑥 − 𝑥 ′, 𝑦 − 𝑦′). (1.2)

The unit circle consists of the points which are distance 1 from the origin 𝑂.
When 𝑃 is on the unit circle, the line formed by the dilates of 𝑃 intersects the unit
circle at ±𝑃 (Figure 1.5).

The unit circle intersects the horizontal axis at the points 𝐼 = (1, 0), and (−1, 0),
and intersects the vertical axis at the points (0, 1), and (0,−1). These four points are
equally spaced on the unit circle (Figure 1.5).

By the distance formula, a point 𝑃 = (𝑥, 𝑦) is on the unit circle when

𝑥2 + 𝑦2 = 1.

More generally, any circle with center 𝐶 = (𝑎, 𝑏) and radius 𝑟 consists of points
𝑃 = (𝑥, 𝑦) satisfying |𝑃 − 𝐶 | = 𝑟, or

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2.

While we call both |𝑡 | and |𝑃 | the absolute value, note the former is the absolute
value of a number, while the latter is the absolute value of a point in the plane.
Even though these quantities refer to different objects, we use the same terminology
because |𝑡 | and |𝑃 | have similar properties.

Given this, it is easy to check
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𝑂

𝑃

−𝑃

𝐼

Fig. 1.5 𝑃 and its antipode −𝑃

|𝑡𝑃 | = |𝑡 | |𝑃 |

for any real number 𝑡 and point 𝑃.
From this, if a point 𝑄 is on the unit circle and 𝑟 > 0, then 𝑟𝑄 is on the circle of

radius 𝑟 and center 𝑂, and 𝐶 + 𝑟𝑄 is on the circle of radius 𝑟 and center 𝐶. Thus 𝑃
is on the circle of radius 𝑟 and center 𝐶 iff 𝑃 is of the form 𝐶 + 𝑟𝑅, for some 𝑅 on
the unit circle.

If 𝑃 is any point not equal to the origin, then 𝑟 = |𝑃 | is positive, and����1𝑟 𝑃���� = 1
𝑟
|𝑃 | = 1

𝑟
𝑟 = 1,

so 𝑃/𝑟 is on the unit circle.

1.2 Angle Stacking

In the cartesian plane, points may be added, subtracted, and dilated. To multiply and
divide points, we first need to learn how to stack angles.

An angle is an ordered pair of lines (“rays”) starting from a common point, which
is called the vertex of the angle. If the vertex is the origin 𝑂, then an angle is
determined by the intersection of its rays with the unit circle. In other words, an
angle is determined by an ordered pair of points 𝑃, 𝑃′ on the unit circle.

We want to measure angles. Whatever method one takes for the measure 𝜃 of the
angle, it should be additive: When angles are stacked, their measures should add
(Figure 1.8).
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Fig. 1.6 Angles

𝑂

𝑃

𝑃′

Fig. 1.7 Intersection of angle with unit circle

𝜃

𝜃′
𝜃 + 𝜃′

Fig. 1.8 Angle additivity

Additive angle measure 𝜃 was introduced by the greek mathematician Archimedes
2200 years ago, as part of his work leading to his famous estimate of the measure of
the half-circumference of the unit circle

223
71

< 𝜋 <
22
7
. (1.3)

By contrast, the greek mathematicians Hipparchus and Ptolemy used chord measure
𝜃1, which is simpler than 𝜃 but not additive, to build their trigonometric tables.
Archimedes’s method, 𝜃, and 𝜃1 are in §1.4.

We now explain how to stack angles. We call an angle anchored if its first point
is 𝐼 = (1, 0). Then an anchored angle is determined by the second point 𝑃 on the
unit circle.
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To stack anchored angles, let 𝑃 = (𝑥, 𝑦) and 𝑃′ = (𝑥 ′, 𝑦′) be on the unit circle,
and let 𝑃′′ be obtained by stacking 𝑃′ atop 𝑃, as in Figure 1.9. We seek the formula
for 𝑃′′.

𝑃

𝐼𝑂

1
𝑃′

𝐼𝑂

1

𝐼𝑂

1

𝑃′′

𝐼𝑂

𝑃′′

1
𝑄

𝑃′′

Fig. 1.9 Stacking anchored angles

The above description of stacking is imprecise, because we do not yet know how
to measure angles, and in particular do not yet know what a right angle is.

To make precise the stacking construction, assume 𝑃′ = (𝑥 ′, 𝑦′) is in the first
quadrant 𝑥 ′ > 0, 𝑦′ > 0, and draw the circle with center 𝑄 = 𝑥 ′𝑃 and radius 𝑦′, as in
Figure 1.9. Then this circle intersects the unit circle at two points, both denoted 𝑃′′

(Figure 1.9).
We think of the first point 𝑃′′ as the result of multiplying 𝑃 and 𝑃′, and we write

𝑃′′ = 𝑃𝑃′, and we think of the second point 𝑃′′ as the result of dividing 𝑃 by 𝑃′,
and we write 𝑃′′ = 𝑃/𝑃′. Then we have the

Angle Stacking Formulas

𝑃′′ = 𝑃𝑃′ = (𝑥𝑥 ′ − 𝑦𝑦′, 𝑥 ′𝑦 + 𝑥𝑦′),
𝑃′′ = 𝑃/𝑃′ = (𝑥𝑥 ′ + 𝑦𝑦′, 𝑥 ′𝑦 − 𝑥𝑦′).

(1.4)

The angle stacking formulas show multiplication and division of points in the
cartesian plane are forced upon us as soon as we attempt to answer the simplest
question: How do we make Figure 1.8 precise?

To derive (1.4), let 𝑃⊥ = (−𝑦, 𝑥) (pronounced “𝑃-perp”). Then
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𝑥 ′𝑃 + 𝑦′𝑃⊥ = (𝑥 ′𝑥, 𝑥 ′𝑦) + (−𝑦′𝑦, 𝑦′𝑥) = (𝑥𝑥 ′ − 𝑦𝑦′, 𝑥 ′𝑦 + 𝑥𝑦′),
𝑥 ′𝑃 − 𝑦′𝑃⊥ = (𝑥 ′𝑥, 𝑥 ′𝑦) − (−𝑦′𝑦, 𝑦′𝑥) = (𝑥𝑥 ′ + 𝑦𝑦′, 𝑥 ′𝑦 − 𝑥𝑦′),

so the angle stacking formulas are equivalent to 𝑃′′ = 𝑥 ′𝑃 ± 𝑦′𝑃⊥.
To establish this, since 𝑃′′ is on the circle of center 𝑄 and radius 𝑦′, we may

write 𝑃′′ = 𝑄 + 𝑦′𝑅, for some point 𝑅 = (𝑎, 𝑏) on the unit circle (§1.1). Then
𝑃′′ = 𝑥 ′𝑃 + 𝑦′𝑅 is on the unit circle iff

1 = |𝑥 ′𝑃 + 𝑦′𝑅 |2 = | (𝑥 ′𝑥 + 𝑦′𝑎, 𝑥 ′𝑦 + 𝑦′𝑏) |2

= (𝑥 ′𝑥 + 𝑦′𝑎)2 + (𝑥 ′𝑦 + 𝑦′𝑏)2

= 𝑥 ′2 (𝑥2 + 𝑦2) + 𝑦′2 (𝑎2 + 𝑏2) + 2𝑥 ′𝑦′(𝑎𝑥 + 𝑏𝑦)
= 𝑥 ′2 + 𝑦′2 + 2𝑥 ′𝑦′(𝑎𝑥 + 𝑏𝑦)
= 1 + 2𝑥 ′𝑦′(𝑎𝑥 + 𝑏𝑦).

But this happens iff 𝑎𝑥 + 𝑏𝑦 = 0, which happens iff 𝑅 is a dilation of 𝑃⊥. Since 𝑅 is
on the unit circle, this forces 𝑅 = ±𝑃⊥ (Figure 1.5), establishing (1.4).

Notice the formula 𝑃′′ = 𝑥 ′𝑃 + 𝑦′𝑃⊥ refers 𝑃′′ to the axes through 𝑃 and 𝑃⊥ as
in Figure 1.10.

𝑂

𝑃

𝑃 + 𝑃⊥

𝑃⊥

Fig. 1.10 𝑃 and 𝑃⊥

The angle stacking formulas are valid only when 𝑃 and 𝑃′ are on the unit circle. To
derive the formulas for multiplication and division of points in general, we proceed
as follows.

Let 𝑟 = |𝑃 | and 𝑟 ′ = |𝑃′ |. Then (§1.1)

𝑃/𝑟 = 1
𝑟
𝑃 =

( 𝑥
𝑟
,
𝑦

𝑟

)
and 𝑃′/𝑟 ′ = 1

𝑟 ′
𝑃′ =

(
𝑥 ′

𝑟 ′
,
𝑦′

𝑟 ′

)
are on the unit circle.
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If we insist multiplication should satisfy (𝑡𝑃)(𝑠𝑃′) = (𝑡𝑠) (𝑃𝑃′), it is natural to
write

𝑃𝑃′ = 𝑟𝑟 ′(𝑃/𝑟) (𝑃′/𝑟 ′) = 𝑟𝑟 ′
(
𝑥

𝑟

𝑥 ′

𝑟 ′
− 𝑦

𝑟

𝑦′

𝑟 ′
,
𝑥 ′

𝑟 ′
𝑦

𝑟
+ 𝑥

𝑟

𝑦′

𝑟 ′

)
= 𝑟𝑟 ′

1
𝑟𝑟 ′

(𝑥𝑥 ′ − 𝑦𝑦′, 𝑥 ′𝑦 + 𝑥𝑦′) = (𝑥𝑥 ′ − 𝑦𝑦′, 𝑥 ′𝑦 + 𝑥𝑦′),

Thus the general formula is the same, and stacking of points may be carried out in
general2 (Figure 1.11). In this case, however, the second point 𝑃′′ is not 𝑃/𝑃′, it is
𝑃�̄�′, where �̄�′ = (𝑥 ′,−𝑦′).

𝑃′

𝑂 �̄�′

𝑂

𝑟𝑟 ′𝐼𝑂

𝑃𝑃′

𝑥′𝑃

(𝑥′+𝑦′)𝑃

(𝑥′−𝑦′)𝑃

𝑃�̄�′

𝑃

Fig. 1.11 Stacking 𝑃 and 𝑃′ in general

Multiplication of Points

𝑃′′ = 𝑃𝑃′ = (𝑥𝑥 ′ − 𝑦𝑦′, 𝑥 ′𝑦 + 𝑥𝑦′). (1.5)

We now turn to division of two points in general. If we insist division should
satisfy (𝑡𝑃)/(𝑠𝑃′) = (𝑡/𝑠)(𝑃/𝑃′), it is natural to write

𝑃

𝑃′ =
𝑟

𝑟 ′
· 𝑃/𝑟
𝑃′/𝑟 ′ =

𝑟

𝑟 ′

(
𝑥

𝑟

𝑥 ′

𝑟 ′
+ 𝑦

𝑟

𝑦′

𝑟 ′
,
𝑥 ′

𝑟 ′
𝑦

𝑟
− 𝑥

𝑟

𝑦′

𝑟 ′

)
=

𝑟

𝑟 ′
· 1
𝑟𝑟 ′

(𝑥𝑥 ′ + 𝑦𝑦′, 𝑥 ′𝑦 − 𝑥𝑦′) = 1
𝑟 ′2

(𝑥𝑥 ′ + 𝑦𝑦′, 𝑥 ′𝑦 − 𝑥𝑦′).

Thus the general formula is different,

2 Here the circle with center 𝑄 = 𝑥′𝑃 has radius 𝑟 𝑦′.



10 1 The Complex Plane

Division of Points

𝑃′′ = 𝑃/𝑃′ =
1

𝑥 ′2 + 𝑦′2
(𝑥𝑥 ′ + 𝑦𝑦′, 𝑥 ′𝑦 − 𝑥𝑦′), (1.6)

for 𝑃′ ≠ 𝑂.

Of course, if 𝑃′ is on unit circle, then 𝑥 ′2 + 𝑦′2 = 1, so the general formula for
division agrees with the angle stacking formula for 𝑃/𝑃′.

Even if we ignore the angle stacking justification for (1.5) and (1.6), one can check
readily that the four arithmetic operations (1.1), (1.2), (1.5), (1.6) satisfy the usual
rules of arithmetic: subtraction is the inverse of addition, 𝑂 is the additive identity,
division is the inverse of multiplication, 𝐼 is the multiplicative identity, and we have
commutativity, associativity, and distributivity.

1.3 Complex Numbers

Points in the cartesian planes may be added, subtracted, multiplied, and divided
(1.1),(1.2), (1.5), (1.6). When we consider points with these arithmetic operations,
they behave like numbers, so we view them as new kinds of numbers. These are the
complex numbers. With this viewpoint, the cartesian plane becomes the complex
plane, which we denote C.

We begin our study of complex numbers by introducing the standard notation for
them. Instead of writing (0, 0), (1, 0), (2, 0), etc, the horizontal axis is called the
real line and points on it are written 0, 1, 2, etc.

−1 0 1 2

𝑖

2𝑖

−𝑖

Fig. 1.12 The complex plane

Also, instead of writing (0, 0), (0, 1), (0, 2), etc, the vertical axis is called the
imaginary line and points on it are written 0𝑖, 𝑖, 2𝑖, etc. Of course, the origin is the
point corresponding to 0 = 01 = 0𝑖.

Writing
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(𝑥, 𝑦) = (𝑥 + 0, 0 + 𝑦) = (𝑥, 0) + (0, 𝑦) = 𝑥(1, 0) + 𝑦(0, 1) = 𝑥1 + 𝑦𝑖 = 𝑥 + 𝑖𝑦,

we see every point (𝑥, 𝑦) may be written 𝑥 + 𝑖𝑦. In the complex plane, points are
denoted 𝑧, and every complex number is of the form 𝑧 = 𝑥 + 𝑖𝑦.

Points in the plane are complex numbers

𝑃 = (𝑥, 𝑦) is the same as 𝑧 = 𝑥 + 𝑖𝑦

In particular, every real number 𝑥 is a complex number 𝑥+𝑖0, and every imaginary
number 𝑖𝑦 is a complex number 0 + 𝑖𝑦.

−1 0 1 2 3

𝑖

2𝑖 3 + 2𝑖

Fig. 1.13 Complex numbers

Adding complex numbers is easy, just add the coordinates: If 𝑧 = 3+2𝑖, 𝑧′ = 1−5𝑖,
then

𝑧 + 𝑧′ = (3 + 2𝑖) + (1 − 5𝑖) = (3 + 1) + (2 − 5)𝑖 = 4 − 2𝑖.

Addition of Complex Numbers

If 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧′ = 𝑥 ′ + 𝑖𝑦′, then

𝑧 + 𝑧′ = (𝑥 + 𝑥 ′) + 𝑖(𝑦 + 𝑦′).

Of course, this is the same as (1.1) in §1.1. Similarly, (1.2) in §1.1 becomes
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Subtraction of Complex Numbers

If 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧′ = 𝑥 ′ + 𝑖𝑦′, then

𝑧 − 𝑧′ = (𝑥 − 𝑥 ′) + 𝑖(𝑦 − 𝑦′).

To multiply, it is best to start by computing 𝑖2 following the angle stacking
formula. Since the complex number 𝑖 is the point (0, 1), to compute 𝑖2 = 𝑖𝑖, we set
𝑃 = (𝑥, 𝑦) = (0, 1) and 𝑃′ = (𝑥 ′, 𝑦′) = (0, 1), and use the angle stacking formula

𝑖2 = 𝑖𝑖 = 𝑃𝑃′ = (𝑥𝑥 ′ − 𝑦𝑦′, 𝑥 ′𝑦 + 𝑥𝑦′) = (00 − 11, 01 + 01) = (−1, 0) = −1.

We conclude 𝑖2 = −1, or 𝑖 is the square root of −1. Since (−𝑖)2 = 𝑖2 = −1, −𝑖 is also
the square root of −1, so −1 has two square roots ±𝑖.

Now we multiply complex numbers using standard algebra, then replacing 𝑖2 by
−1: If 𝑧 = 3 + 2𝑖, 𝑧′ = 1 − 5𝑖, then

𝑧𝑧′ = (3 + 2𝑖)(1 − 5𝑖) = 3(1) + 3(−5𝑖) + (2𝑖)1 + (2𝑖)(−5𝑖)
= 3 − 15𝑖 + 2𝑖 − 10𝑖2 = 3 − 13𝑖 − 10(−1) = 13 − 13𝑖.

In general, if we repeat the same procedure, the product of 𝑧 = 𝑥 + 𝑖𝑦 and
𝑧′ = 𝑥 ′ + 𝑖𝑦′ is

Multiplication of Complex Numbers

If 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧′ = 𝑥 ′ + 𝑖𝑦′, then

𝑧𝑧′ = (𝑥 + 𝑖𝑦)(𝑥 ′ + 𝑖𝑦′) = (𝑥𝑥 ′ − 𝑦𝑦′) + 𝑖(𝑥 ′𝑦 + 𝑥𝑦′).

Of course, this is the same as (1.5) in §1.2. Just like before, the absolute value of
a complex number 𝑧 = 𝑥 + 𝑖𝑦 is

𝑟 = |𝑧 | =
√
𝑥2 + 𝑦2,

so
𝑟2 = |𝑧 |2 = |𝑥 + 𝑖𝑦 |2 = 𝑥2 + 𝑦2.

Every complex number 𝑧 has a real part Re(𝑧) = 𝑥 and an imaginary part
Im(𝑧) = 𝑦. These parts are real numbers: The real part of 𝑧 = 𝑥 + 𝑖𝑦 is 𝑥, and the
imaginary part is 𝑦 (not 𝑦𝑖). So Re(3 + 2𝑖) = 3 and Im(3 + 2𝑖) = 2 (not 2𝑖).

Also Re(5) = 5 and Im(5) = 0, since 5 = 5 + 0𝑖. The real part of 𝑖 is 0, and the
imaginary part of 𝑖 is 1, since 𝑖 = 0 + 1𝑖.

An important formula is
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|𝑧𝑧′ | = |𝑧 | |𝑧′ |, or |𝑧𝑧′ |2 = |𝑧 |2 |𝑧′ |2.

This says the absolute value of the product is the product of the absolute values. This
looks less obvious when written out in detail using the angle stacking formula,

(𝑥𝑥 ′ − 𝑦𝑦′)2 + (𝑥 ′𝑦 + 𝑥𝑦′)2 =
(
𝑥2 + 𝑦2

) (
𝑥 ′2 + 𝑦′2

)
, (1.7)

but this is easily checked by multiplying out the terms.

−𝑦 0 𝑥

𝑧 = 𝑥 + 𝑖𝑦
𝑖𝑦

𝑖𝑧
𝑖𝑥

Fig. 1.14 𝑧 and 𝑖𝑧

Remember (Figure 1.10) if 𝑃 = (𝑥, 𝑦), then 𝑃⊥ = (−𝑦, 𝑥) (pronounced “𝑃-perp”).
In terms of complex numbers, this is 𝑧 = 𝑥 + 𝑖𝑦 and

𝑖𝑧 = 𝑖(𝑥 + 𝑖𝑦) = 𝑖𝑥 + 𝑖𝑦2 = −𝑦 + 𝑥𝑖.

Thus if 𝑧 is the complex number corresponding to 𝑃, then 𝑖𝑧 is the complex number
corresponding to 𝑃⊥ (Figure 1.14).

We interpret the multiplication of complex numbers 𝑧 and 𝑤 geometrically. To be
specific, we take 𝑤 = 2 + 3𝑖. Multiplying,

𝑧𝑤 = 𝑧(2 + 3𝑖) = 2𝑧 + 3𝑖𝑧 = 2𝑧 + 3(𝑖𝑧),

and Figure 1.15 displays the outcome: The product 𝑧𝑤 is obtained by placing the
shadow of 𝑤 along the line through 𝑧, and dilating it by the factor |𝑧 |.

Above we saw ±𝑖 are the square roots of −1. Now we give a formula for the square
root of 𝑧 = 𝑥 + 𝑖𝑦, as long as 𝑧 is not a negative real number or zero. When |𝑧 | = 1, 𝑧
is on the unit circle, and the formula is
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3𝑖 𝑤 = 2 + 3𝑖
0

𝑧

2𝑧

3𝑧

𝑖𝑧

2𝑖𝑧

3𝑖𝑧

𝑧𝑤

Fig. 1.15 Multiplying 𝑧 and 𝑤 = 2 + 3𝑖

√
𝑧 =

(𝑥 + 1) + 𝑖𝑦
√

2 + 2𝑥
. (1.8)

In general, the formula is

√
𝑧 =

(𝑥 + 𝑟) + 𝑖𝑦
√

2𝑟 + 2𝑥
, (1.9)

where 𝑟 = |𝑧 | =
√
𝑥2 + 𝑦2.

Note these formulas for
√
𝑧 are not valid when 𝑧 is a negative real number or zero,

because then the denominator is zero. From (1.9), it follows
√
𝑧 is continuous.3 Since

(√𝑧)2 = 𝑧,
√
𝑧 is injective.4

Since (√
𝑧
√
𝑧′
)2

=
(√

𝑧
)2

(√
𝑧′
)2

= 𝑧𝑧′,

√
𝑧
√
𝑧′ is a square root of 𝑧𝑧′. Since 𝑧𝑧′ has at most two square roots, we must have√

𝑧𝑧′ = ±√𝑧
√
𝑧′. In fact, when 𝑧, 𝑧′ are in the unit circle first quadrant, it is easy to

check that it is the + sign, so √
𝑧𝑧′ =

√
𝑧
√
𝑧′. (1.10)

This says the product of the square roots is the square root of the product, when 𝑧
and 𝑧′ are in the first quadrant.

If 𝑧 = 𝑥 + 𝑖𝑦, let 𝑧 = 𝑥 − 𝑦𝑖. This is the conjugate of 𝑧. Then

3 𝑧𝑛 → 𝑧 implies √𝑧𝑛 → √
𝑧.

4 𝑧 ≠ 𝑧′ implies
√
𝑧 ≠

√
𝑧′.
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𝑧𝑧 = (𝑥 + 𝑖𝑦)(𝑥 − 𝑦𝑖) = 𝑥2 + 𝑦2 = |𝑧 |2.

So, the product of a complex number and its conjugate equals its absolute value
squared.

We evaluate the reciprocal 1/𝑧 of 𝑧 by multiplying by the conjugate 𝑧,

1
𝑧
=

1
𝑥 + 𝑖𝑦

=
1

𝑥 + 𝑖𝑦
· 𝑥 − 𝑖𝑦

𝑥 − 𝑖𝑦
=

𝑥 − 𝑖𝑦

𝑥2 + 𝑦2 =
𝑥

𝑥2 + 𝑦2 − 𝑖𝑦

𝑥2 + 𝑦2 .

For example,

1
2 + 3𝑖

=
1

2 + 3𝑖
· 2 − 3𝑖

2 − 3𝑖
=

2 − 3𝑖
22 + 32 =

2
13

− 3𝑖
13

.

So the real part of 1/(2 + 3𝑖) is 2/13, and the imaginary part is −3/13.
More generally, to divide 𝑧 = 1 + 2𝑖 by 𝑤 = 2 + 3𝑖,

𝑧

𝑤
= 𝑧 · 1

𝑤
= (1 + 2𝑖) · 1

2 + 3𝑖
= (1 + 2𝑖)

(
2
13

− 3𝑖
13

)
=

8
13

+ 𝑖

13
.

In general,

Division of Complex Numbers

If 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧′ = 𝑥 ′ + 𝑖𝑦′ and 𝑧′ ≠ 0, then

𝑧

𝑧′
=

𝑥 + 𝑖𝑦

𝑥 ′ + 𝑖𝑦′
=

𝑥 + 𝑖𝑦

𝑥 ′ + 𝑦′𝑖
· 𝑥

′ − 𝑖𝑦′

𝑥 ′ − 𝑖𝑦′
=

(𝑥𝑥 ′ + 𝑦𝑦′) + 𝑖(𝑥 ′𝑦 − 𝑥𝑦′)
𝑥 ′2 + 𝑦′2

.

Of course, this is the same as (1.6) in §1.2.

1.4 Angle Bisection

From Figure 1.16, we see a natural measure of an angle is the length of the arc along
the unit circle. Let 𝑃 be a point on the unit circle. How do we measure the length
of the arc joining 𝑃 and 𝐼 = (1, 0)? This measure, which we call 𝜃, tells us how far
along the circle the point 𝑃 is.

Similarly, let 𝑧 be a complex number on the unit circle. How do we measure the
length of the arc joining 𝑧 and 1? This measure, which we call 𝜃, tells us how far
along the circle 𝑧 is.

These are the same question because, as we saw, there is a natural correspondence
between a point 𝑃 = (𝑥, 𝑦) and a complex number 𝑧 = 𝑥 + 𝑖𝑦.
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𝑂 1

1

𝑃

𝐼

𝜃

0

𝑧

1

𝜃

Fig. 1.16 𝜃 is the length of the arc

Archimedes answered this question more than 2200 years ago using his bisection
method. This goes as follows.

Let 𝑧 = 𝑥 + 𝑖𝑦 be on the unit circle, and define, as in Figure 1.17,

𝑚 =
𝑧 + 1

2
, 𝑧1 =

𝑚

|𝑚 | .

When 𝑧 = −1, we are dividing by |𝑚 | = 0, so we assume 𝑧 ≠ −1. Then

𝑧1 =
(𝑥 + 1) + 𝑖𝑦
√

2 + 2𝑥
= 𝑥1 + 𝑖𝑦1. (1.11)

By (1.8), 𝑧1 =
√
𝑧.

0 1

𝜃1

𝑧

0

𝑧1

1

𝑧

𝑚

0

𝑧1

𝑧2

𝑧

1
2 𝜃2

1
2 𝜃2

1

Fig. 1.17 Bisection

With 𝑧1 = 𝑥1 + 𝑖𝑦1, 𝑥1 > 0, hence
√
𝑧 is in the right-half unit circle. Moreover, the

map
√
𝑧 is injective on the punctured unit circle 𝑧 ≠ 1, and the imaginary parts of

𝑧 and
√
𝑧 have the same sign.

Let 𝜃1 = 𝜃1 (𝑧) = |𝑧 − 1| be as in in Figure 1.17, with 𝑧 in the unit circle first
quadrant. Then 𝜃1 is chord measure, and it is easy to check 𝜃1 = 2𝑦1, and
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𝑦 < 2𝑦1 <
2𝑦1

𝑥1
<

𝑦

𝑥
. (1.12)

Similarly, let 𝑧2 = 𝑥2+𝑖𝑦2 =
√
𝑧1 and let 𝜃2 = 𝜃2 (𝑧) = 2𝜃1 (𝑧1) be the chord-length

sum in Figure 1.17. Then 𝜃2 = 4𝑦2 and

2𝑦1 < 4𝑦2 <
4𝑦2

𝑥2
<

2𝑦1

𝑥1
, (1.13)

when 𝑧 is on the upper-half unit circle 𝑦 > 0.
We repeat this process indefinitely as follows. If we define 𝜃𝑛 and 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛

recursively by 𝜃𝑛+1 (𝑧) = 2𝜃𝑛 (
√
𝑧) and 𝑧𝑛+1 =

√
𝑧𝑛, 𝑛 ≥ 2, then 𝜃1, 𝜃2, 𝜃3, . . . are

obtained by repeated bisection of the subtended arc, and it is easy to check

𝜃1 = 2𝑦1, 𝜃2 = 4𝑦2, 𝜃3 = 8𝑦3, 𝜃4 = 16𝑦4, . . . (1.14)

Repeating (1.13) gives 𝑦 < 2𝑛𝑦𝑛 and

2𝑦1 < 4𝑦2 < 8𝑦3 < 16𝑦4 < · · · < 16𝑦4

𝑥4
<

8𝑦3

𝑥3
<

4𝑦2

𝑥2
<

2𝑦1

𝑥1
.

Inserting (1.14) gives the Archimedes sequence

𝜃1 < 𝜃2 < 𝜃3 < 𝜃4 < · · · < 𝜃4

𝑥4
<

𝜃3

𝑥3
<

𝜃2

𝑥2
<

𝜃1

𝑥1
, (1.15)

when 𝑧 is on the upper-half unit circle 𝑦 > 0.
Let 𝑧 be in the unit circle first quadrant. Then 𝑦 − 𝑥 − 1 < 0, so

𝑦1 − 𝑥1 =
𝑦 − 𝑥 − 1
√

2 + 2𝑥
<

1
2
(𝑦 − 𝑥 − 1),

leading to
2(1 − 𝑥1 + 𝑦1) < 1 − 𝑥 + 𝑦.

Repeating this, we obtain

𝑦 < 2𝑛𝑦𝑛 < 2𝑛 (1 − 𝑥𝑛 + 𝑦𝑛) < 1 − 𝑥 + 𝑦, (1.16)

for 𝑛 ≥ 1. Hence 𝑦 < 𝜃𝑛 < 1 − 𝑥 + 𝑦, 𝑛 ≥ 1, as suggested by the dashed lines in
Figure 1.17.

Since the sequence 𝜃𝑛 is bounded, by (1.14), 𝑦𝑛 → 0 as 𝑛 → ∞. Since, for
0 < 𝑥 < 1,

𝑥1 =

√
1 + 𝑥

2
>
√
𝑥 > 𝑥,

the sequence 𝑥𝑛 is increasing. It follows 𝑥𝑛 → 1 as 𝑛 → ∞.
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By (1.15), the sequence 𝜃𝑛 is increasing and bounded. By the completeness
property5 of the real numbers, this sequence has a limit. By (1.15) again, the sequence
𝜃𝑛/𝑥𝑛 is decreasing and bounded. By the completeness property of the real numbers
again, this sequence has a limit. Since 𝑥𝑛 → 1 as 𝑛 → ∞, these limits coincide,
thus the sequences in (1.15) have a common limit 𝜃 = 𝜃 (𝑧). By construction,
𝜃 (𝑧) = 2𝜃 (√𝑧) follows, when 𝑧 is on the upper-half unit circle 𝑦 > 0.

Appealing to (1.14), and passing to the limit in (1.16), as 𝑛 → ∞, when 𝑧 is in
the unit circle first quadrant, we obtain

𝑦 < 𝜃 (𝑧) ≤ 1 − 𝑥 + 𝑦, 𝑧 = 𝑥 + 𝑖𝑦, (1.17)

as suggested by the dashed lines in Figure 1.17.
Extend 𝜃 (𝑧) to the lower-half unit circle 𝑦 < 0 by 𝜃 (𝑧) = −𝜃 (1/𝑧), and set

𝜃 (1) = 0. Then 𝜃 (1/𝑧) = −𝜃 (𝑧) and 𝜃 (𝑧) = 2𝜃 (√𝑧) for every 𝑧 ≠ −1 on the unit
circle.

This completes the construction of the Archimedes angle measure 𝜃 = 𝜃 (𝑧), for
every 𝑧 on the unit circle, other than 𝑧 = −1.

Let 𝑧 be in the unit circle first quadrant. From (1.11), 𝑦1 is an increasing function
of 𝑦. Similarly, with 𝑦2 playing the role of 𝑦1, 𝑦2 is an increasing function of 𝑦1, hence
an increasing function of 𝑦. Continuing in this manner, 𝑦𝑛, 𝑛 ≥ 1, are increasing
functions of 𝑦. By (1.14), 𝜃𝑛, 𝑛 ≥ 1, are increasing functions of 𝑦. Passing to the
limit, it follows 𝜃 (𝑧) is an increasing function of 𝑦, when 𝑧 is in the unit circle first
quadrant. Since 𝜃 (𝑧) = 𝜃 (1/𝑧) = −𝜃 (𝑧), 𝜃 (𝑧) is an odd function of 𝑦. Thus 𝜃 (𝑧) is
an increasing function of 𝑦, when 𝑧 is in the right-half unit circle.

1.5 Angle Additivity

For any nonzero complex number 𝑧, let 𝑟 = |𝑧 | be its absolute value. Then���� 𝑧|𝑧 | ���� = ��� 𝑧
𝑟

��� = 1
𝑟
· |𝑧 | = 1,

so 𝑧/𝑟 has absolute value 1, so 𝑧/𝑟 lies on the unit circle (see Figure 1.18).
Extend the definition of 𝜃 (𝑧) to any 𝑧 that is not a negative real number nor zero,

by setting
𝜃 (𝑧) = 𝜃

( 𝑧
𝑟

)
, 𝑟 = |𝑧 |.

Then 𝑟 = |𝑧 | and 𝜃 = 𝜃 (𝑧) are polar coordinates: 𝑟 is the distance of 𝑧 to 0, and 𝜃 is
the length of the arc along the unit circle between 1 and 𝑧/𝑟 .

Since 𝜃 is defined for all 𝑧 except for 𝑧 = 𝑥 ≤ 0, 𝜃 (𝑖) is defined. We call this
measure 𝜋/2: 𝜋/2 is defined as the (measure of the) angle of 𝑖.

5 Every increasing bounded sequence has a limit.
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𝑟

0
𝜃

𝑧

𝑧/𝑟

𝑥

𝑖𝑦

1

Fig. 1.18 Polar coordinates

Definition of 𝜋

𝜋/2 = 𝜃 (𝑖) or 𝜋 = 2𝜃 (𝑖).

Since 𝜃 (−𝑖) = 𝜃 (1/𝑖) = −𝜋/2, and 𝜃 (𝑧) is an increasing function of 𝑦 when 𝑧 is
in the right-half unit circle (§1.4), it follows 𝜃 (𝑧) varies from −𝜋/2 to 𝜋/2 when 𝑧
is in the right-half unit circle. Using 𝜃 (𝑧) = 2𝜃 (√𝑧), it follows 𝜃 varies between −𝜋
and 𝜋 when 𝑧 is in the punctured unit circle 𝑧 ≠ −1.

0
𝜃

𝑥

𝑦

𝑟

𝑧

𝑖

−𝑖

1 0 11
𝜋

−𝜋

𝜋/2

−𝜋/2

Fig. 1.19 𝜃 = 𝜃 (𝑧) is defined for all 𝑧 except for 𝑧 = 𝑥 ≤ 0

The key property of 𝜃 (𝑧) is its angle additivity. By the angle stacking formula,
this is the same as additivity as in Figure 1.8.
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Angle Additivity

𝜃 (𝑧𝑧′) = 𝜃 (𝑧) + 𝜃 (𝑧′), 𝑥 > 0, 𝑥 ′ > 0. (1.18)

Proof (Proof of additivity) Let 𝑧 = 𝑥+𝑖𝑦, 𝑧′ = 𝑥 ′+𝑖𝑦′ be in the right-half unit circle,
𝑥 > 0 and 𝑥 ′ > 0, and let 𝑧′′ = 𝑧𝑧′ = 𝑥 ′′ + 𝑖𝑦′′. Let 𝜃 = 𝜃 (𝑧), 𝜃 ′ = 𝜃 (𝑧′), and let
𝜃 ′′ = 𝜃 (𝑧′′). Since (1.18) is immediate when 𝑦𝑦′𝑦′′ = 0, we may assume 𝑦𝑦′𝑦′′ ≠ 0.
There are two cases.

First, if 𝑦𝑦′ > 0, using 𝜃 (1/𝑧) = −𝜃 (𝑧), we may assume 𝑦 > 0 and 𝑦′ > 0. Let
𝑧′𝑛 = 𝑥 ′𝑛 + 𝑖𝑦′𝑛, 𝑧′′𝑛 = 𝑥 ′′𝑛 + 𝑖𝑦′′𝑛 , 𝑛 ≥ 1, be the Archimedes sequences starting from
𝑧′, 𝑧′′ respectively, and let 𝜃 ′𝑛, 𝜃 ′′𝑛 , 𝑛 ≥ 1, be the corresponding chord-length sums.
Then, by (1.10), 𝑧′′𝑛 = 𝑧𝑛𝑧

′
𝑛, thus 𝑦′′𝑛 = 𝑥 ′𝑛𝑦𝑛 + 𝑥𝑛𝑦

′
𝑛, hence, by (1.14),

𝜃 ′′𝑛 = 𝑥 ′𝑛𝜃𝑛 + 𝑥𝑛𝜃
′
𝑛, 𝑛 ≥ 1.

Now let 𝑛 approach ∞. Then 𝑥𝑛 approaches 1, and 𝑥 ′𝑛 approaches 1, so we obtain
𝜃 ′′ = 𝜃 + 𝜃 ′, which is (1.18).

Second, if 𝑦𝑦′ < 0, we have 𝑥 ′′ = 𝑥𝑥 ′ − 𝑦𝑦′ > 0. Since 𝑦𝑦′ < 0, 𝑦′′(−𝑦) and
𝑦′′(−𝑦′) have opposite signs. By switching the roles of 𝑧 and 𝑧′ if necessary, we may
assume 𝑦′′(−𝑦) > 0. Applying the first case to 𝑧′′ and 1/𝑧 = 𝑥 − 𝑖𝑦,

𝜃 (𝑧′) = 𝜃 (𝑧′′/𝑧) = 𝜃 (𝑧′′) + 𝜃 (1/𝑧) = 𝜃 (𝑧𝑧′) − 𝜃 (𝑧),

and we obtain (1.18). □

By (1.17), 𝜃 (𝑧) ≠ 0 when 𝑥 > 0 and 𝑦 > 0. It follows 𝜃 (𝑧) ≠ 0 when 𝑥 > 0 and
𝑦 ≠ 0. Using 𝜃 (𝑧) = 2𝜃 (√𝑧), it follows 𝜃 (𝑧) ≠ 0 for 𝑧 ≠ ±1 in the unit circle.

If 𝑧 and 𝑧′ are in the right-half unit circle with 𝑧 ≠ 𝑧′, then 𝑧/𝑧′ ≠ ±1. By (1.18),

𝜃 (𝑧) − 𝜃 (𝑧′) = 𝜃 (𝑧) + 𝜃 (1/𝑧′) = 𝜃 (𝑧/𝑧′) ≠ 0.

Thus 𝜃 (𝑧) ≠ 𝜃 (𝑧′). In short, 𝜃 (𝑧) is injective6 on the right-half unit circle. Since
√
𝑧

is injective on the punctured circle 𝑧 ≠ −1, by 𝜃 (𝑧) = 2𝜃 (√𝑧) again, 𝜃 (𝑧) is injective
on the punctured circle 𝑧 ≠ −1.

By (1.17),
|𝜃 (𝑧) | ≤ 1 − 𝑥 + |𝑦 |, 𝑧 = 𝑥 + 𝑖𝑦, 𝑥 > 0.

Hence 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛 → 1 implies 𝜃 (𝑧𝑛) → 0. Thus 𝜃 (𝑧) is continuous at 𝑧 = 1. If
𝑧𝑛 → 𝑧, then 𝑧𝑛/𝑧 → 1. By (1.18),

𝜃 (𝑧𝑛) − 𝜃 (𝑧) = 𝜃 (𝑧𝑛) + 𝜃 (1/𝑧) = 𝜃 (𝑧𝑛/𝑧) → 0.

6 𝑧 ≠ 𝑧′ implies 𝜃 (𝑧) ≠ 𝜃 (𝑧′) .
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Thus 𝜃 (𝑧) is continuous7 on the right-half unit circle. Since
√
𝑧 is itself continuous on

the punctured circle 𝑧 ≠ −1, by 𝜃 (𝑧) = 2𝜃 (√𝑧), 𝜃 (𝑧) is continuous on the punctured
circle 𝑧 ≠ −1.

Writing

𝜃 (𝑧) = 𝜃 (𝑥 + 𝑖𝑦) = 𝜃

(√
1 − 𝑦2 + 𝑖𝑦

)
, −1 ≤ 𝑦 ≤ 1, (1.19)

it follows 𝜃 (𝑧) is a continuous strictly increasing function of 𝑦 on the right-half unit
circle 𝑥 ≥ 0. By the intermediate value theorem,8 𝜃 (𝑧) maps the right-half unit circle
𝑥 ≥ 0 onto [−𝜋/2, 𝜋/2]. By 𝜃 (𝑧) = 2𝜃 (√𝑧), 𝜃 (𝑧) maps the punctured unit circle
𝑧 ≠ −1 onto (−𝜋, 𝜋).

To summarize,

Angle Measure

Angle measure 𝜃 (𝑧) is a one-to-one continuous map of the punctured unit
circle 𝑧 ≠ −1 onto the interval (−𝜋, 𝜋).

1
−1

𝑧

𝜃 = 𝜃 (𝑧)
−𝜋 0 𝜋𝜃

Fig. 1.20 The function 𝜃 = 𝜃 (𝑧)

Recall 𝜋 = 2𝜃 (𝑖). To achieve (1.3) using (1.15), Archimedes effectively calculated

2𝜃6 (𝑖) = 64

√√√√
2 −

√√√√√√√
2 + 2 + 2 + 2 + 2. (1.20)

In what follows, we refer to 𝜃 (𝑧) as “the angle of 𝑧”, even though strictly speaking
𝜃 (𝑧) is the measure of the angle of 𝑧.

7 𝑧𝑛 → 𝑧 implies 𝜃 (𝑧𝑛) → 𝜃 (𝑧) .
8 The image of an interval under a continuous function is an interval.
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Exercises

Problem 1.1 Let 𝑃 = (1, 0) and 𝑄 = (3, 2) and 𝑅 = (0, 1). Calculate 𝑃𝑄, 𝑃/𝑄, 𝑃𝑅,
𝑃/𝑅, 𝑄𝑅, 𝑄/𝑅.

Problem 1.2 Label the edge lengths 𝑥, 𝑦, 𝑥 ′, 𝑦′ in Figure 1.10. What are the areas of
the two squares in Figure 1.10, and the areas of the triangles in Figure 1.10? Figure
1.10 is the basis for a classical proof of the Pythagoras theorem.

Problem 1.3 Verify equation (1.7).

Problem 1.4 We say a point 𝑃′ is the reciprocal of a point 𝑃 if 𝑃𝑃′ = 𝐼, where
𝐼 = (1, 0). Show the reciprocal of (𝑥, 𝑦) is(

𝑥

𝑥2 + 𝑦2 ,
−𝑦

𝑥2 + 𝑦2

)
.

Problem 1.5 Show that there are only two complex numbers 𝑧 = 𝑥 + 𝑖𝑦 satisfying
𝑧2 = 1, and they are 𝑧 = 1 and 𝑧 = −1.

Problem 1.6 Show
√
𝑧 given by (1.9) satisfies (√𝑧)2 = 𝑧.

Problem 1.7 Let 𝑤 be a complex number not equal to zero. Show there are at most
two complex numbers 𝑧 satisfying 𝑧2 = 𝑤. Hint: If 𝑧1 and 𝑧2 both satisfy 𝑧2

1 = 𝑤 and
𝑧2

2 = 𝑤, then 𝑧 = 𝑧1/𝑧2 satisfies 𝑧2 = 1, so 𝑧 = ±1.

Problem 1.8 Let 𝑤 be a complex number not equal to zero. Show there are at least
two complex numbers 𝑧 satisfying 𝑧2 = 𝑤.

Problem 1.9 Given 𝑎, 𝑏, 𝑐 complex, with 𝑎 ≠ 0, show the solutions of 𝑎𝑧2+𝑏𝑧+𝑐 = 0
satisfy the quadratic formula

𝑧 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

.

Problem 1.10 Show that 1/𝑧 = 𝑧 when 𝑧 is on the unit circle.

Problem 1.11 Assume 𝑧 and 𝑧′ are in the first quadrant. Show 𝑧𝑧′ and
√
𝑧
√
𝑧′ and√

𝑧𝑧′ are in the upper-half plane. From this, conclude (1.10).

Problem 1.12 Using 𝑧1 + 𝑖𝑦1 =
√
𝑧 and 𝑧2 = 𝑥2 + 𝑖𝑦2 =

√
𝑧1, verify (1.12) and (1.13).

Problem 1.13 Verify (1.14).

Problem 1.14 Let 𝑧 = 𝑥 + 𝑖𝑦 be in the first quadrant unit circle. Use (1.11) to show
that 𝑦 < 2(1 − 𝑥1 + 𝑦1) < 1 − 𝑥 + 𝑦.



Chapter 2
Real Elementary Functions

In the previous chapter, the measure 𝜃 of an angle was defined and its additivity was
shown to be intertwined with complex multiplication. Building on this, the usual
secondary school definition of sin 𝜃 as the “opposite over the hypotenuse” now makes
sense, paving the way for the study of trigonometry, the circular functions sine and
cosine.

The fundamental result of trigonometry states there is only one way to assign
points 𝑧 on the unit circle to real numbers 𝜃 in an additive manner, and this assignment
is given by the circular functions. Here additivity means the complex product 𝑧𝑧′
corresponds to the sum 𝜃 + 𝜃 ′, when 𝑧 and 𝑧′ correspond to 𝜃 and 𝜃 ′.

This leads to the 𝑛-th roots of unity 𝜔, which play a fundamental role not only
in complex analysis, but also in extending the notion of commensurability (greatest
common divisor) to other algebraic number systems in the complex plane.

In this chapter we also review, as preparation for the next chapter, additivity of
the real exponential function, which is the real law of exponents. This in turn builds
on the binomial theorem, and leads to real Taylor series.

2.1 Trigonometry

Let 𝑧 be a complex number and let 𝜃 = 𝜃 (𝑧) be the angle (§1.4) of 𝑧. Then 𝜃 is
defined for 𝑧 = 𝑥 + 𝑖𝑦 not on the non-positive real half-line 𝑥 ≤ 0.

Since 𝜃 (𝑧) is a one-to-one map between the punctured circle 𝑧 ≠ −1 and the
interval (−𝜋, 𝜋), we may define cos 𝜃 and sin 𝜃 by setting them equal to 𝑥 and 𝑦
respectively (Figure 2.1).

More precisely, let 𝑧(𝜃) be the inverse of 𝜃 (𝑧), and let cos 𝜃 and sin 𝜃 be the real
and imaginary parts of 𝑧(𝜃), so

𝑧(𝜃) = cos 𝜃 + 𝑖 sin 𝜃. (2.1)

Then 𝑧(𝜃), cos 𝜃, and sin 𝜃 are defined on (−𝜋, 𝜋).

23
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𝑖

0
𝜃

𝑥 1

(+, +)(−, +)

(−, −) (+, −)

𝑖𝑦 𝑧 = 𝑥 + 𝑖𝑦

Fig. 2.1 𝑥 = cos 𝜃 and 𝑦 = sin 𝜃

Since 𝑧(𝜃) is in the unit circle,

sin2 𝜃 + cos2 𝜃 = 1,

hence the values sin 𝜃 and cos 𝜃 range in [−1, 1].

1
−1

𝑧
𝑧 = 𝑧 (𝜃)

−𝜋 0 𝜋𝜃

Fig. 2.2 The function 𝑧 = 𝑧 (𝜃) is the inverse of 𝜃 = 𝜃 (𝑧)

From Figure 2.1, when 𝑧 is in the first quadrant, sin 𝜃 and cos 𝜃 are both positive,
and when 𝑧 is in the third quadrant, sin 𝜃 and cos 𝜃 are both negative. When 𝑧 is
in the second quadrant, sin 𝜃 is positive and cos 𝜃 is negative, and when 𝑧 is in the
fourth quadrant, sin 𝜃 is negative and cos 𝜃 is positive.

From 𝜃 (𝑧) = 2𝜃 (√𝑧), we have 𝜃 (𝑧) = 𝜃 (𝑧2)/2. Since 𝑧(𝜃) is the inverse of 𝜃 (𝑧),
this implies

𝑧(𝜃) = 𝑧(𝜃/2)2. (2.2)

From this, it follows sin 𝜃 and cos 𝜃 are continuous functions on (−𝜋, 𝜋). In
more detail, on the right-half circle, 𝜃 (𝑧) is a continuous strictly increasing function
of 𝑦 (1.19), hence1 the inverse 𝑦 = sin 𝜃 is continuous on (−𝜋/2, 𝜋/2). It follows

1 The inverse of a continuous bijection on an interval is itself continuous.
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cos 𝜃 =
√

1 − sin2 𝜃 is continuous on (−𝜋/2, 𝜋/2), hence 𝑧(𝜃) is continuous on
(−𝜋/2, 𝜋/2). By (2.2), it follows 𝑧(𝜃), sin 𝜃, and cos 𝜃, are continuous on (−𝜋, 𝜋).

The above defines sin 𝜃 and cos 𝜃 only on (−𝜋, 𝜋). That we can extend their
definition to all real 𝜃, preserving additivity, and in a unique manner, is the content
of the

2.1. Fundamental Theorem of Trigonometry

There is a continuous non-constant map 𝑧(𝜃) of the real line into the unit
circle, unique up to rescaling, satisfying

𝑧(𝜃)𝑧(𝜃 ′) = 𝑧(𝜃 + 𝜃 ′), (2.3)

for all real 𝜃, 𝜃 ′.

If 𝛼 is a real number, and a map 𝑧(𝜃) satisfies (2.3), then the rescaled map 𝑧(𝛼𝜃)
satisfies (2.3). Thus we can only expect uniqueness up to rescaling.

There are two aspects here, existence of 𝑧(𝜃), and uniqueness of 𝑧(𝜃). Let 𝑧(𝜃)
be the inverse of 𝜃 (𝑧). To establish existence, we extend the domain of 𝑧(𝜃) from
(−𝜋, 𝜋) to the whole real line.

To begin, we claim additivity implies the validity of (2.3) for 𝜃, 𝜃 ′ in (−𝜋/2, 𝜋/2).
To see this, insert 𝑧 = 𝑧(𝜃), 𝑧′ = 𝑧(𝜃 ′) into (1.18). Since 𝜃 (𝑧(𝜃)) = 𝜃, we obtain
𝜃 (𝑧𝑧′) = 𝜃 + 𝜃 ′, establishing the claim.

To establish existence, we use (2.2) repeatedly to define 𝑧(𝜃) on successively
larger intervals. Define 𝑧(𝜃) on (−2𝜋, 2𝜋) by (2.2). This extends the domain of 𝑧(𝜃)
from (−𝜋, 𝜋) to (−2𝜋, 2𝜋). If 𝜃 and 𝜃 ′ are in (−𝜋, 𝜋), then 𝜃 + 𝜃 ′ is in (−2𝜋, 2𝜋), and

𝑧(𝜃)𝑧(𝜃 ′) = (𝑧(𝜃/2))2 (𝑧(𝜃 ′/2))2 = (𝑧(𝜃/2)𝑧(𝜃 ′/2))2

= 𝑧((𝜃 + 𝜃 ′)/2)2 = 𝑧(𝜃 + 𝜃).

Thus the extended map 𝑧(𝜃) satisfies (2.3) on (−𝜋, 𝜋). Repeating this procedure,
use (2.2) to extend 𝑧(𝜃) to (−4𝜋, 4𝜋). Then the same argument shows 𝑧(𝜃) satisfies
(2.3) on (−2𝜋, 2𝜋). Continuing in this manner, we extend 𝑧(𝜃) to (−2𝑛𝜋, 2𝑛𝜋), and
establish (2.3) on (−2𝑛−1𝜋, 2𝑛−1𝜋), successively for 𝑛 = 1, 2, . . . . Since 𝑧(𝜃) is
continuous on (−𝜋, 𝜋), the extension is continuous on the entire real line.

This establishes the existence of a continuous non-constant map of the real line
into the unit circle, satisfying (2.3) for all real 𝜃, 𝜃 ′. In particular, since 𝑧(±𝜋/2) = ±𝑖,
by (2.3), 𝑧(±𝜋) = −1. It follows every point 𝑧 on the unit circle is of the form 𝑧(𝜃),
with 𝜃 in [−𝜋, 𝜋].

Before we establish uniqueness, we look at the periods of the extended map 𝑧(𝜃).
A period of 𝑧(𝜃) is a positive number 𝛼 such that

𝑧(𝜃 + 𝛼) = 𝑧(𝜃),
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for all real 𝜃. By (2.3),𝛼 is a period iff 𝑧(𝛼) = 1. Since 𝑧(𝜋) = −1, 𝑧(2𝜋) = (−1)2 = 1,
hence 2𝜋 is a period. If 𝛼 is a period, then 𝑧(𝛼/2) = ±1. Since 𝑧(𝜃) ≠ ±1 when
0 < 𝜃 < 𝜋, the smallest period is 2𝜋.

If 𝛼 is a period, then any positive integer multiple 𝑛𝛼 is a period. Thus 2𝑛𝜋,
𝑛 = 1, 2, 3, . . . , are periods. Conversely, if 𝛼 is any period, then 𝛼 ≥ 2𝜋; let 𝑛 be
the greatest integer ≤ 𝛼/2𝜋. Then 𝛽 = 𝛼 − 𝑛 · 2𝜋 satisfies 0 ≤ 𝛽 < 2𝜋. If 𝛽 > 0,
since the difference of two periods is a period, 𝛽 is a period. But this contradicts the
minimality of 2𝜋. It follows 𝛽 = 0, hence the periods of 𝑧(𝜃) are 2𝑛𝜋, 𝑛 = 1, 2, 3, . . . .

The constant map 𝑧(𝜃) ≡ 1 satisfies (2.3) for all real 𝜃, 𝜃 ′. Therefore, to rule
this uninteresting case out, when establishing uniqueness, we assume 𝑧(𝜃) is non-
constant.

We now establish uniqueness. Let 𝑧0 (𝜃) = cos 𝜃 + 𝑖 sin 𝜃 be the map constructed
above, and let 𝑧(𝜃) = 𝑥(𝜃)+𝑖𝑦(𝜃) be any continuous non-constant map of the real line
into the unit circle, satisfying (2.3) for all real 𝜃, 𝜃 ′. Then (2.3) implies 𝑧(0)2 = 𝑧(0),
hence 𝑧(0) = 1.

Since 𝑧(𝜃) is non-constant and 𝑧(0) = 1, there is an 𝛼 ≠ 0 with 𝑥(𝛼) < 1.
Since cos 0 = 1, by continuity, there is an 𝑛 ≥ 1 such that 𝑥(𝛼) < cos(2𝜋/𝑛) < 1.
By the intermediate value theorem, there is a 𝛽 with 𝑥(𝛽) = cos(2𝜋/𝑛), hence
𝑧(𝛽) = 𝑧0 (±2𝜋/𝑛). By (2.3), 𝑧(𝑛𝛽) = 𝑧0 (±2𝜋) = 1, hence 𝑧(𝜃) has at least one
period.

Let 𝜃 be a positive number. If 𝛼 is a period, there is an integer 𝑛 with 𝑛𝛼 ≤ 𝜃 <
(𝑛+1)𝛼. Since 𝑛𝛼 is a period, it follows there is a period within (𝜃−𝛼, 𝜃+𝛼). If 𝑧(𝜃)
has arbitrarily small periods, it follows there are periods that are arbitrarily close to
𝜃. By continuity, this implies 𝜃 is a period, or 𝑧(𝜃) = 1. Since 𝜃 was arbitrary, this
implies 𝑧(𝜃) is constant, which contradicts our non-constancy assumption. Thus the
greatest lower bound 𝛼 of the set of periods of 𝑧(𝜃) is positive. By continuity, 𝛼 is
itself a period, hence is a smallest period. This establishes the existence of a smallest
period 𝛼 for 𝑧(𝜃).

Now rescale 𝑧(𝜃) to 𝑧1 (𝜃) = 𝑧(𝛼𝜃/2𝜋). Then 𝑧1 (𝜃) has smallest period 2𝜋.
Thus, without loss of generality, we may assume 𝛼 = 2𝜋. With this assumption,
𝑧(±𝜋) = −1, 𝑧(𝜋/2) = 𝑖 or 𝑧(−𝜋/2) = 𝑖, and 𝑧(𝜃) ≠ ±1 for 0 < |𝜃 | < 𝜋. In
particular,

√
𝑧(𝜃) is defined for −𝜋 < 𝜃 < 𝜋. By (2.2), 𝑧(𝜃/2) is a square root of

𝑧(𝜃), hence
𝑧(𝜃/2) =

√
𝑧(𝜃), −𝜋 < 𝜃 < 𝜋, (2.4)

up to sign.2 We claim (2.4) is correct as written. This is immediate when 𝜃 = 0, so
assume 𝜃 ≠ 0. If the imaginary parts of 𝑧(𝜃) and 𝑧(𝜃/2) have opposite signs, by the
intermediate value theorem, 𝑧(𝜃 ′) = 1 or 𝑧(𝜃 ′) = −1, for some 𝜃 ′ between 𝜃 and
𝜃/2. Since this can’t happen, the imaginary parts of 𝑧(𝜃) and 𝑧(𝜃/2) must have the
same sign. It follows the imaginary parts of

√
𝑧(𝜃) and 𝑧(𝜃/2) have the same sign,

establishing the claim.
By rescaling again 𝑧(𝜃) to 𝑧(−𝜃) if necessary, we may also assume 𝑧(𝜋/2) = 𝑖.

Using (2.3) and (2.4) repeatedly, we conclude 𝑧(𝜃𝜋/2) = 𝑖𝜃 for all dyadic ratio-
nals 𝜃 = 𝑘2−𝑛. Since the dyadic rationals are dense and 𝑧(𝜃) is continuous, this

2 This means 𝑧 (𝜃/2) = ±
√
𝑧 (𝜃) .
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determines3 𝑧(𝜃) uniquely. This completes the proof of the fundamental theorem of
trigonometry.

If we write 𝑧(𝜃 ′) = cos 𝜃 ′ + 𝑖 sin 𝜃 ′, then (2.3) reduces to the

Trigonometric Addition Formulas

For all real 𝜃, 𝜃 ′,

sin(𝜃 + 𝜃 ′) = sin 𝜃 cos 𝜃 ′ + cos 𝜃 sin 𝜃 ′,

and
cos(𝜃 + 𝜃 ′) = cos 𝜃 cos 𝜃 ′ − sin 𝜃 sin 𝜃 ′.

Moreover, replacing 𝜃 by 2𝜃 in (2.2), we obtain the

Trigonometric Doubling Formulas

For all real 𝜃,

sin(2𝜃) = 2 sin 𝜃 cos 𝜃, cos(2𝜃) = cos2 𝜃 − sin2 𝜃,

and
sin2 𝜃 =

1 − cos(2𝜃)
2

, cos2 𝜃 =
1 + cos(2𝜃)

2
.

To compute the derivatives of sin 𝜃 and cos 𝜃, we first establish the following limit

lim
𝜃→0

sin 𝜃
𝜃

= 1. (2.5)

For this, it is enough to show

1 − | sin 𝜃 |
1 + cos 𝜃

<
sin 𝜃
𝜃

< 1 (2.6)

for 0 < |𝜃 | < 𝜋/2, since taking the limit 𝜃 → 0 in (2.6) yields (2.5).
In (2.6), all sides are even functions, so we may assume 0 < 𝜃 < 𝜋/2. In this case,

we may insert 𝑧 = 𝑧(𝜃) into (1.17). Since 𝑧(𝜃) = cos 𝜃 + 𝑖 sin 𝜃, this is the same as
inserting 𝑥 = cos 𝜃 and 𝑦 = sin 𝜃. Since 𝑧(𝜃) is the inverse of 𝜃 (𝑧), we obtain

sin 𝜃 < 𝜃 < 1 − cos 𝜃 + sin 𝜃.

Dividing the left inequality by 𝜃 yields

3 Continuous functions that agree on a dense set agree everywhere.
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sin 𝜃
𝜃

< 1.

Dividing the right inequality by 𝜃 yields

1 − 1 − cos 𝜃
𝜃

<
sin 𝜃
𝜃

,

or
sin 𝜃
𝜃

> 1 − 1 − cos2 𝜃

𝜃 (1 + cos 𝜃) = 1 − sin 𝜃
𝜃

· sin 𝜃
1 + cos 𝜃

> 1 − sin 𝜃
1 + cos 𝜃

.

Thus
1 − sin 𝜃

1 + cos 𝜃
<

sin 𝜃
𝜃

< 1,

which is (2.6). Taking the limit as 𝜃 → 0, we obtain 2.5.
Since

lim
𝜃→0

1 − cos 𝜃
𝜃

= lim
𝜃→0

sin 𝜃
𝜃

· sin 𝜃
1 + cos 𝜃

= 1 · 0
2
= 0,

we have also shown
lim
𝜃→0

1 − cos 𝜃
𝜃

= 0. (2.7)

By the addition formula,

sin(𝜃 + ℎ) − sin 𝜃
ℎ

= sin 𝜃 · cos ℎ − 1
ℎ

+ cos 𝜃 · sin ℎ

ℎ
.

Taking the limit as ℎ → 0 yields

(sin 𝜃) ′ = lim
ℎ→0

sin(𝜃 + ℎ) − sin 𝜃
ℎ

= sin 𝜃 · 0 + cos 𝜃 · 1 = cos 𝜃.

Similarly,
cos(𝜃 + ℎ) − cos 𝜃

ℎ
= cos 𝜃 · cos ℎ − 1

ℎ
− sin 𝜃 · sin ℎ

ℎ
.

Taking the limit as ℎ → 0 yields

(cos 𝜃) ′ = lim
ℎ→0

cos(𝜃 + ℎ) − cos 𝜃
ℎ

= cos 𝜃 · 0 − sin 𝜃 · 1 = − sin 𝜃.
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Trigonometric Derivatives

For all 𝜃 real,

(sin 𝜃) ′ = cos 𝜃, (cos 𝜃) ′ = − sin 𝜃,

hence
(cos 𝜃 + 𝑖 sin 𝜃) ′ = 𝑖(cos 𝜃 + 𝑖 sin 𝜃).

It follows that sin 𝜃 and cos 𝜃 have derivatives of all orders, with

(sin 𝜃) (𝑛) =


sin 𝜃, 𝑛 = 0, 4, 8, 12, . . .
cos 𝜃, 𝑛 = 1, 5, 9, 13, . . .
− sin 𝜃, 𝑛 = 2, 6, 10, 14, . . .
− cos 𝜃, 𝑛 = 2, 6, 11, 15, . . .

and

(cos 𝜃) (𝑛) =


cos 𝜃, 𝑛 = 0, 4, 8, 12, . . .
− sin 𝜃, 𝑛 = 1, 5, 9, 13, . . .
− cos 𝜃, 𝑛 = 2, 6, 10, 14, . . .
sin 𝜃, 𝑛 = 2, 6, 11, 15, . . .

These may be combined into

𝑑𝑛

𝑑𝜃𝑛
(cos 𝜃 + 𝑖 sin 𝜃) = 𝑖𝑛 (cos 𝜃 + 𝑖 sin 𝜃), 𝑛 ≥ 0.

2.2 Roots of Unity

Since 𝜔 = 1 and 𝜔 = −1 both satisfy 𝜔2 = 1, 𝜔 are the square roots of 1. They are
the square roots of unity. Since −1 = 𝑖2 and the angle of 𝑖 is 𝜋/2 (by definition of 𝜋),
by angle additivity, the angle of −1 is 𝜋/2 + 𝜋/2 = 𝜋.

Similarly, since

𝜔 = −1
2
+ 𝑖

√
3

2
, (2.8)

satisfies 𝜔3 = 1, we say 𝜔 is a cube root of unity. Since 𝜔3 = 1 and the angle of 1 is
2𝜋, by angle additivity, the angle of 𝜔 is 2𝜋/3.

To see where the formula for the cube root comes from, write 𝜔 = 𝑥 + 𝑖𝑦.
Multiplying,

1 = 𝜔3 = 𝜔2𝜔 = (𝑥 + 𝑦𝑖)2 (𝑥 + 𝑦𝑖) = (𝑥3 − 3𝑥𝑦2) + 𝑖(3𝑥2𝑦 − 𝑦3).
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0

𝜋

1−1

Fig. 2.3 The square roots of unity

0

2𝜋/3

1

𝜔

𝜔2

Fig. 2.4 The cube roots of unity

Since 1 has imaginary part 0, we have 3𝑥2𝑦 − 𝑦3 = 0. Canceling 𝑦, we obtain
3𝑥2 = 𝑦2. But 𝑥2 + 𝑦2 = 1, so 4𝑥2 = 1, or 𝑥 = ±1/2. Since 𝜔 is in the second
quadrant, 𝑥 = −1/2. From this, we get 𝑦2 = 3/4 or 𝑦 =

√
3/2. This shows

𝑥 = cos(2𝜋/3) = −1
2

and 𝑦 = sin(2𝜋/3) =
√

3
2
,

which justifies (2.8).
Similarly, if 𝜔 equals ±1 or ±𝑖, then 𝜔4 = 1, so these are the fourth roots of unity.
In general, a complex number 𝑧 satisfying 𝑧𝑛 = 1 is an 𝑛-th root of unity. By

(2.3), multiplying complex numbers corresponds to adding their angles. From this,
the angles of the 𝑛-th roots of unity equal the integer multiples of 2𝜋/𝑛.
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𝜔
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Fig. 2.5 The fourth roots of unity
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1

𝜋/4

𝜔𝜔3

𝜔4
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Fig. 2.6 The eighth roots of unity
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𝜔
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𝜔4

𝜔5

𝜔6

𝜔7

𝜔8

𝜔9
𝜔10

𝜔11

Fig. 2.7 The twelfth roots of unity
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The 𝑛-th roots of unity

Let 𝑛 = 1, 2, 3, . . . be a natural number. An 𝑛-th root of unity is a complex
number 𝑧 on the unit circle satisfying

𝑧𝑛 = 1.

There are 𝑛 distinct 𝑛-th roots of unity, of the form 1,𝜔,𝜔2, . . . ,𝜔𝑛−1, where

𝜔 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛)

is the principal 𝑛-th root of unity.

0
1

𝜋/3

𝜔𝜔2

𝜔3

𝜔4 𝜔5

Fig. 2.8 The sixth roots of unity

Thus the angles of the square roots of unity are 0 and 𝜋, the angles of the cube
roots of unity are 0, 2𝜋/3, 4𝜋/3, the angles of the fourth roots of unity are 0, 𝜋/2,
𝜋, 3𝜋/2, the angles of the fifth roots of unity are 0, 2𝜋/5, 4𝜋/5, 6𝜋/5, 8𝜋/5, and the
angles of the sixth roots of unity are 0, 𝜋/3, 2𝜋/3, 𝜋, 4𝜋/3, 5𝜋/3.

Let us calculate the eighth root of unity 𝑧 = 𝜔 = 𝑥 + 𝑖𝑦, which lies exactly halfway
between 1 and 𝑖 (Figure 2.6), with angle 𝜃 = 𝜋/4. Since 𝜔2 = 𝑖, we have

𝑖 = 𝜔2 = (𝑥 + 𝑖𝑦)2 = 𝑥2 − 𝑦2 + 𝑖2𝑥𝑦,

which implies 𝑥2 − 𝑦2 = 0. Since 𝑥 and 𝑦 are both positive, we see 𝑥 = 𝑦. But
𝑥2 + 𝑦2 = 1, so 2𝑥2 = 1, or 𝑥 = 𝑦 = 1/

√
2. This shows

sin(𝜋/4) = 1
√

2
and cos(𝜋/4) = 1

√
2
.

Since
𝑧(𝜃 + 𝜋/2) = 𝑖𝑧(𝜃) = 𝑖(𝑥 + 𝑦𝑖) = −𝑦 + 𝑖𝑥,
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Fig. 2.9 The tenth roots of unity

0
1

2𝜋/5

𝜔
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𝜔3

𝜔4

Fig. 2.10 The fifth roots of unity

we have

sin(𝜃 + 𝜋/2) = cos 𝜃 and cos(𝜃 + 𝜋/2) = − sin 𝜃.

For example,

sin(3𝜋/4) = 1/
√

2 and cos(3𝜋/4) = −1/
√

2.

Since the twelfth root unity 𝜔 has angle 2𝜋/12 = 𝜋/6, the angle of 𝑖𝜔 is 𝜋/6 +
𝜋/2 = 2𝜋/3, hence 𝑖𝜔 = 𝑧3. From this we obtain

𝑥 = cos(𝜋/6) =
√

3
2

and 𝑦 = sin(𝜋/6) = 1
2
.

To derive the formula for the tenth root of unity, write 𝜔 = 𝑥 + 𝑖𝑦 = cos(𝜋/5) +
𝑖 sin(𝜋/5). By the binomial theorem 2.2 with 𝑛 = 5,

𝜔5 = (𝑥 + 𝑖𝑦)5 = 𝑥5 + 5𝑖 𝑥4𝑦 − 10 𝑥3𝑦2 − 10𝑖 𝑥2𝑦3 + 5 𝑥𝑦4 + 𝑖 𝑦5.
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Since 𝜔5 = −1, the imaginary part vanishes,

5 𝑥4𝑦 − 10 𝑥2𝑦3 + 𝑦5 = 0.

Canceling 𝑦 and substituting 𝑥2 = 1 − 𝑦2,

16𝑦4 − 20𝑦2 + 5 = 0.

By the quadratic formula,

𝑦2 =
5 ±

√
5

8
.

Since 𝑦 = sin(2𝜋/10) = sin(𝜋/5) < sin(𝜋/4) = 1/
√

2, we take the minus sign.
Hence

sin(𝜋/5) = 𝑦 =

√
5 −

√
5

8
, cos(𝜋/5) =

√
3 +

√
5

8
.

Using the trigonometric doubling formulas, the fifth root of unity is

sin(2𝜋/5) = 𝑦 =

√
5 +

√
5

8
, cos(2𝜋/5) =

√
3 −

√
5

8
.

Since 𝜃 (1) = 0, we have cos 0 = 1 and sin 0 = 0. Table 2.11 summarizes the
results of this section.

𝜃 degrees cos 𝜃 sin 𝜃 root

0 0◦ 1 0 𝑧∞

𝜋/6 30◦
√

3/2 1/2 𝑧12

𝜋/5 36◦
√
(3 +

√
5)/8

√
(5 −

√
5)/8 𝑧10

𝜋/4 45◦ 1/
√

2 1/
√

2 𝑧8

𝜋/3 60◦ 1/2
√

3/2 𝑧6

2𝜋/5 72◦
√
(5 +

√
5)/8

√
(3 −

√
5)/8 𝑧5

𝜋/2 90◦ 0 1 𝑧4

2𝜋/3 120◦ −1/2
√

3/2 𝑧3

𝜋 180◦ −1 0 𝑧2

2𝜋 360◦ 1 0 𝑧1

Fig. 2.11 The standard angles
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2.3 Binomial Theorem

Let 𝑥 and 𝑎 be variables. A binomial is an expression of the form

(𝑥 + 𝑎)2, (𝑥 + 𝑎)3, (𝑥 + 𝑎)4, . . .

The degree of each of these binomials is 2, 3, and 4.
When binomials are expanded by multiplying out, one obtains a sum of terms.

The binomial theorem specifies the exact pattern or form of the resulting sum.
Recall that

(𝑎 + 𝑏)(𝑐 + 𝑑) = 𝑎(𝑐 + 𝑑) + 𝑏(𝑐 + 𝑑) = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑.

Similarly,

(𝑎 + 𝑏) (𝑐 + 𝑑 + 𝑒) = 𝑎(𝑐 + 𝑑 + 𝑒) + 𝑏(𝑐 + 𝑑 + 𝑒) = 𝑎𝑐 + 𝑎𝑑 + 𝑎𝑒 + 𝑏𝑐 + 𝑏𝑑 + 𝑏𝑒.

Using this algebra, we can expand each binomial.
Expanding (𝑥 + 𝑎)2 yields

(𝑥 + 𝑎)2 = (𝑥 + 𝑎)(𝑥 + 𝑎) = 𝑥2 + 𝑥𝑎 + 𝑎𝑥 + 𝑎2 = 𝑥2 + 2𝑎𝑥 + 𝑎2. (2.9)

Similarly, for (𝑥 + 𝑎)3, we have

(𝑥 + 𝑎)3 = (𝑥 + 𝑎) (𝑥 + 𝑎)2 = (𝑥 + 𝑎) (𝑥2 + 2𝑎𝑥 + 𝑎2)
= 𝑥3 + 2𝑥2𝑎 + 𝑥𝑎2 + 𝑎𝑥2 + 2𝑎𝑥𝑎 + 𝑎3

= 𝑥3 + 3𝑎𝑥2 + 3𝑎2𝑥 + 𝑎3.

(2.10)

For (𝑥 + 𝑎)4, we have

(𝑥 + 𝑎)4 = (𝑥 + 𝑎)(𝑥 + 𝑎)3 = (𝑥 + 𝑎)(𝑥3 + 3𝑎𝑥2 + 3𝑎2𝑥 + 𝑎3)
= 𝑥4 + 3𝑎𝑥3 + 3𝑎2𝑥2 + 𝑎3𝑥 + 𝑎𝑥3 + 3𝑎2𝑥2 + 3𝑎3𝑥 + 𝑎4

= 𝑥4 + 4𝑎𝑥3 + 6𝑎2𝑥2 + 4𝑎𝑥3 + 𝑎4.

(2.11)

Thus

(𝑥 + 𝑎)2 = 𝑥2 + 2𝑎𝑥 + 𝑎2

(𝑥 + 𝑎)3 = 𝑥3 + 3𝑎𝑥2 + 3𝑎2𝑥 + 𝑎3

(𝑥 + 𝑎)4 = 𝑥4 + 4𝑎𝑥3 + 6𝑎2𝑥2 + 4𝑎3𝑥 + 𝑎4

(𝑥 + 𝑎)5 = ★𝑥5 +★𝑎𝑥4 +★𝑎2𝑥3 +★𝑎3𝑥2 +★𝑎4𝑥 +★𝑎5

(2.12)

where ★ means we haven’t found the coefficient yet.
There is a pattern in (2.12). In the first line, the powers of 𝑥 are in decreasing

order, 2, 1, 0, while the powers of 𝑎 are in increasing order, 0, 1, 2. In the second



36 2 Real Elementary Functions

line, the powers of 𝑥 decrease from 3 to 0, while the powers of 𝑎 increase from 0
to 3. In the third line, the powers of 𝑥 decrease from 4 to 0, while the powers of 𝑎
increase from 0 to 4.

This pattern of powers is simple and clear. Now we want to find the pattern for the
coefficients in front of each term. In (2.12), these coefficients are (1, 2, 1), (1, 3, 3, 1),
(1, 4, 6, 4, 1), and (★,★,★,★,★,★). These coefficients are the binomial coefficients.

Before we determine the pattern, we introduce a useful notation for these coeffi-
cients by writing (

2
0

)
= 1,

(
2
1

)
= 2,

(
2
2

)
= 1

and (
3
0

)
= 1,

(
3
1

)
= 3,

(
3
2

)
= 3,

(
3
3

)
= 1

and (
4
0

)
= 1,

(
4
1

)
= 4,

(
4
2

)
= 6,

(
4
3

)
= 4,

(
4
4

)
= 1

and (
5
0

)
= ★,

(
5
1

)
= ★,

(
5
2

)
= ★,

(
5
3

)
= ★,

(
5
4

)
= ★,

(
5
5

)
= ★.

With this notation, the number (
𝑛

𝑘

)
(2.13)

is the coefficient of 𝑥𝑛−𝑘𝑎𝑘 when you multiply out (𝑥 + 𝑎)𝑛. This is the binomial
coefficient. Here 𝑛 is the degree of the binomial, and 𝑘 , which specifies the term in
the resulting sum, varies from 0 to 𝑛.

It is important to remember that, in this notation, the binomial (𝑥 + 𝑎)2 expands
into the sum of three terms 𝑥2, 2𝑎𝑥, 𝑎2. These are term 0, term 1, and term 2.
Alternatively, one says these are the zeroth term, the first term, and the second
term. Thus the second term in the expansion of the binomial (𝑥 + 𝑎)4 is 6𝑎2𝑥2,
and the binomial coefficient

(4
2
)
= 6. In general, the binomial (𝑥 + 𝑎)𝑛 of degree 𝑛

expands into a sum of 𝑛 + 1 terms.
Since the binomial coefficient

(𝑛
𝑘

)
is the coefficient of 𝑥𝑛−𝑘𝑎𝑘 when you multiply

out (𝑥 + 𝑎)𝑛, we have the binomial theorem.

2.2. Binomial Theorem

The binomial (𝑥 + 𝑎)𝑛 equals(
𝑛

0

)
𝑥𝑛 +

(
𝑛

1

)
𝑥𝑛−1𝑎 +

(
𝑛

2

)
𝑥𝑛−2𝑎2 + · · · +

(
𝑛

𝑛 − 1

)
𝑥𝑎𝑛−1 +

(
𝑛

𝑛

)
𝑎𝑛. (2.14)
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It is important to remember that 𝑥 and 𝑎 are variables, so they can be any numbers
whose arithmetic is commutative, associative, and distributive. In particular, 𝑥 and
𝑎 may be complex numbers.

The binomial coefficient
(𝑛
𝑘

)
is called “𝑛-choose-𝑘”, because it is the coefficient

of the term corresponding to choosing 𝑘 𝑎’s when multiplying the 𝑛 factors in the
product

(𝑥 + 𝑎)𝑛 = (𝑥 + 𝑎) (𝑥 + 𝑎)(𝑥 + 𝑎) . . . (𝑥 + 𝑎).
For example, the term

(4
2
)
𝑎2𝑥2 corresponds to choosing two 𝑎’s, and two 𝑥’s, when

multiplying the four factors in the product

(𝑥 + 𝑎)4 = (𝑥 + 𝑎) (𝑥 + 𝑎)(𝑥 + 𝑎)(𝑥 + 𝑎).

The binomial coefficients may be arranged in a triangle, Pascal’s triangle (Figure
2.12). Can you figure out the numbers ★ in this triangle before peeking ahead?

0: 1

1: 1 1

2: 1 2 1

3: 1 3 3 1

4: 1 4 6 4 1

5: 1 5 10 10 5 1

6: ★ 6 15 20 15 6 ★

7: 1 ★ 21 35 35 21 ★ 1

8: 1 8 ★ 56 70 56 ★ 8 1

9: 1 9 36 ★ 126 126 ★ 36 9 1

10: 1 10 45 120 ★ 252 ★ 120 45 10 1

Fig. 2.12 Pascal’s triangle

In Pascal’s triangle, the very top row has one number in it: This is the zeroth
row corresponding to 𝑛 = 0 and the binomial expansion of (𝑥 + 𝑎)0 = 1. The first
row corresponds to 𝑛 = 1; it contains the numbers (1, 1), which correspond to the
binomial expansion of (𝑥 + 𝑎)1 = 1𝑥 + 1𝑎. We say the zeroth entry (𝑘 = 0) in the
first row (𝑛 = 1) is 1 and the first entry (𝑘 = 1) in the first row is 1. Similarly, the
zeroth entry (𝑘 = 0) in the second row (𝑛 = 2) is 1, and the second entry (𝑘 = 2)
in the second row (𝑛 = 2) is 1. The second entry (𝑘 = 2) in the fourth row (𝑛 = 4)
is 6. For every row, the entries are counted starting from 𝑘 = 0, and end with 𝑘 = 𝑛,
so there are 𝑛 + 1 entries in row 𝑛. With this understood, the 𝑘-th entry in the 𝑛-th
row is the binomial coefficient 𝑛-choose-𝑘 . So 10-choose-2 is
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10
2

)
= 45.

We can learn a lot about the binomial coefficients from this triangle. First, we
have 1’s all along the left edge. Next, we have 1’s all along the right edge. Similarly,
one step in from the left or right edge, we have the row number. Thus we have(

𝑛

0

)
= 1 =

(
𝑛

𝑛

)
,

(
𝑛

1

)
= 𝑛 =

(
𝑛

𝑛 − 1

)
, 𝑛 ≥ 1.

Note also Pascal’s triangle has a left-to-right symmetry: If you read off the
coefficients in a particular row, you can’t tell if you’re reading them from left to right,
or from right to left. It’s the same either way: The fifth row is (1, 5, 10, 10, 5, 1). In
terms of our notation, this is written(

𝑛

𝑘

)
=

(
𝑛

𝑛 − 𝑘

)
, 0 ≤ 𝑘 ≤ 𝑛;

the binomial coefficients remain unchanged when 𝑘 is replaced by 𝑛 − 𝑘 .
The key step in finding a formula for 𝑛-choose-𝑘 is to notice

(𝑥 + 𝑎)𝑛+1 = (𝑥 + 𝑎)(𝑥 + 𝑎)𝑛.

Let’s work this out when 𝑛 = 3. Then the left side is (𝑥 + 𝑎)4. From (2.12), we get(
4
0

)
𝑥4 +

(
4
1

)
𝑥3𝑎 +

(
4
2

)
𝑥2𝑎2 +

(
4
3

)
𝑥𝑎3 +

(
4
4

)
𝑎4

= (𝑥 + 𝑎)
((

3
0

)
𝑥3 +

(
3
1

)
𝑥2𝑎 +

(
3
2

)
𝑥𝑎2 +

(
3
3

)
𝑎3

)
=

(
3
0

)
𝑥4 +

(
3
1

)
𝑥3𝑎 +

(
3
2

)
𝑥2𝑎2 +

(
3
3

)
𝑥𝑎3

+
(
3
0

)
𝑥3𝑎 +

(
3
1

)
𝑥2𝑎2 +

(
3
2

)
𝑥𝑎3 +

(
3
3

)
𝑎4

=

(
3
0

)
𝑥4 +

((
3
1

)
+

(
3
0

))
𝑥3𝑎 +

((
3
2

)
+

(
3
1

))
𝑥2𝑎2

+
((

3
3

)
+

(
3
2

))
𝑥𝑎3 +

(
3
3

)
𝑎4.

Equating corresponding coefficients of 𝑥, we get,(
4
1

)
=

(
3
1

)
+

(
3
0

)
,

(
4
2

)
=

(
3
2

)
+

(
3
1

)
,

(
4
3

)
=

(
3
3

)
+

(
3
2

)
.

In general, a similar calculation establishes
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𝑛 + 1
𝑘

)
=

(
𝑛

𝑘

)
+

(
𝑛

𝑘 − 1

)
, 1 ≤ 𝑘 ≤ 𝑛. (2.15)

This allows us to build Pascal’s triangle (Figure 2.12), where, apart from the ones
on either end, each term (“the child”) in a given row is the sum of the two terms
(“the parents”) located directly above in the previous row.

Insert 𝑥 = 1 and 𝑎 = 1 in the binomial theorem to get

2𝑛 =

(
𝑛

0

)
+

(
𝑛

1

)
+

(
𝑛

2

)
+ · · · +

(
𝑛

𝑛 − 1

)
+

(
𝑛

𝑛

)
. (2.16)

We conclude the sum of the binomial coefficients along the 𝑛-th row of Pascal’s
triangle is 2𝑛 (remember 𝑛 starts from 0).

Now insert 𝑥 = 1 and 𝑎 = −1. You get

0 =

(
𝑛

0

)
−

(
𝑛

1

)
+

(
𝑛

2

)
− · · · ±

(
𝑛

𝑛 − 1

)
±

(
𝑛

𝑛

)
.

Hence: the alternating4 sum of the binomial coefficients along the 𝑛-th row of
Pascal’s triangle is zero.

Here is a formula for 𝑛-choose-𝑘:(
𝑛

𝑘

)
=
𝑛 · (𝑛 − 1) · · · · · (𝑛 − 𝑘 + 1)

1 · 2 · · · · · 𝑘 , 1 ≤ 𝑘 ≤ 𝑛, (2.17)

so (
7
3

)
=

7 · 6 · 5
1 · 2 · 3

= 35 =

(
7
4

)
and

(
10
2

)
=

10 · 9
1 · 2

= 45 =

(
10
8

)
.

The formula (2.17) is easy to remember: There are 𝑘 terms in the numerator as well
as the denominator, the factors in the denominator increase starting from 1, and the
factors in the numerator decrease starting from 𝑛.

Now we express the binomial coefficients in terms of factorials. Given a positive
integer 𝑛, n-factorial is the product

𝑛! = 𝑛 · (𝑛 − 1) · (𝑛 − 2) · · · · · 4 · 3 · 2, 𝑛 ≥ 2. (2.18)

So 2! = 2, 3! = 6, 4! = 24, and so on.
We defined 𝑛! for 𝑛 ≥ 2. If we set 0! = 1! = 1, then the binomial coefficient

formula (2.17) may be rewritten(
𝑛

𝑘

)
=

𝑛!
𝑘!(𝑛 − 𝑘)! , 0 ≤ 𝑘 ≤ 𝑛,

as may be verified by cancellation of common factors from the numerator and
denominator. For example,

4 Alternating means the plus-minus pattern + − + − + − . . . .
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7!
3!(7 − 3)! =

7 · 6 · 5 · 4 · 3 · 2 · 1
3 · 2 · 1 · 4 · 3 · 2 · 1

=
7 · 6 · 5
3 · 2 · 1

=

(
7
3

)
.

It is important to know roughly the size of 𝑛! for large 𝑛. By knowing the size of
𝑛!, we mean being able to compare 𝑛! with more familiar quantities.

Bounds for 𝑛!

3
(𝑛
3

)𝑛
≤ 𝑛! ≤ 2

(𝑛
2

)𝑛
, 𝑛 ≥ 1 (2.19)

This is derived in a series of steps.
Step 1 Use the binomial theorem to derive(

1 + 1
𝑛

)𝑛
≥ 2, 𝑛 ≥ 1.

Step 2 Let 𝑠1 = 1, 𝑠2 = 3/2, 𝑠3 = 7/4, 𝑠4 = 15/8, and, in general,

𝑠𝑛 = 1 + 1
2
+ 1

4
+ 1

8
+ · · · + 1

2𝑛−1 , 𝑛 ≥ 1.

Show 𝑠𝑛 never exceeds 2. (Multiply 𝑠𝑛 by 2 to obtain

2𝑠𝑛 = 2 + 𝑠𝑛 −
1

2𝑛−1 ,

then solve for 𝑠𝑛.)
Step 3 Use the binomial theorem and the previous step to derive(

1 + 1
𝑛

)𝑛
≤ 1 + 𝑠𝑛 ≤ 3, 𝑛 ≥ 1.

(Insert 𝑥 = 1 and 𝑎 = 1/𝑛 in (2.14).)
Step 4 Combining the previous steps, we get

2 ≤
(
1 + 1

𝑛

)𝑛
≤ 3, 𝑛 ≥ 1 (2.20)

Step 5 Let 𝑎𝑛 = 𝑛! and 𝑏𝑛 = 2(𝑛/2)𝑛. Use the left side of (2.20) to derive

𝑎𝑛+1

𝑏𝑛+1
≤ 𝑎𝑛

𝑏𝑛
.

Since 𝑎1 = 𝑏1, we obtain

1 =
𝑎1

𝑏1
≥ 𝑎2

𝑏2
≥ 𝑎3

𝑏3
≥ . . .
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Thus 𝑎𝑛 ≤ 𝑏𝑛 for all 𝑛 ≥ 1, which is the right side of (2.19).
Step 6 Let 𝑎𝑛 = 𝑛! and 𝑏𝑛 = 3(𝑛/3)𝑛. Use the right side of (2.20) to derive

𝑎𝑛
𝑏𝑛

≤ 𝑎𝑛+1

𝑏𝑛+1
.

Since 𝑎1 = 𝑏1, we obtain

1 =
𝑎1

𝑏1
≤ 𝑎2

𝑏2
≤ 𝑎3

𝑏3
≤ . . .

Thus 𝑎𝑛 ≥ 𝑏𝑛 for all 𝑛 ≥ 1, which is the left side of (2.19).

2.4 Real Exponential

Exponential Function

The exponential function is the following limit,

𝑒𝑥 = exp 𝑥 = lim
𝑛→∞

(
1 + 𝑥

𝑛

)𝑛
, (2.21)

valid for all 𝑥 real.

The exponential function exp 𝑥 is not a power, like 3𝑛, nor a root, like 31/𝑛.
However, because exp 𝑥 satisfies the law of exponents (below), we denote exp 𝑥 = 𝑒𝑥 .

Since (1 + 𝑥/𝑛)𝑛 increases when 𝑥 increases, 𝑒𝑥 is an increasing function, as
soon as the limit exists. To establish the existence of the limit, we use the binomial
theorem, and the geometric sum identity

1 − 𝑥𝑛 = (1 − 𝑥) (1 + 𝑥 + 𝑥2 + · · · + 𝑥𝑛−1), 𝑛 ≥ 1, (2.22)

which can be easily verified by multiplying out the factors.
Since 𝑒0 = 1, we assume first 𝑥 > 0. We use the binomial theorem to show the

sequence in (2.21) is increasing and bounded, hence has a limit 𝑒𝑥 .
For 𝑘 fixed,

1
𝑛𝑘

(
𝑛

𝑘

)
=

1
𝑘!

(
1 − 1

𝑛

) (
1 − 2

𝑛

)
. . .

(
1 − 𝑘 − 1

𝑛

)
is an increasing function of 𝑛. By the binomial theorem,
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1 + 𝑥

𝑛

)𝑛
=

𝑛∑
𝑘=0

1
𝑛𝑘

(
𝑛

𝑘

)
𝑥𝑘

≤
𝑛∑

𝑘=0

1
(𝑛 + 1)𝑘

(
𝑛 + 1
𝑘

)
𝑥𝑘

≤
𝑛+1∑
𝑘=0

1
(𝑛 + 1)𝑘

(
𝑛 + 1
𝑘

)
𝑥𝑘

=
(
1 + 𝑥

𝑛 + 1

)𝑛+1
.

Thus5 the sequence in (2.21) increases to a possibly infinite limit.
When 0 < 𝑥 ≤ 1, by (2.20), the sequence in (2.21) is bounded by 3. Thus the limit

𝑒𝑥 in (2.21) exists for 0 < 𝑥 ≤ 1. In particular, 𝑒 = 𝑒1 is between 2 and 3. When6
0 < 𝑥 ≤ 𝑁 ,

lim
𝑛→∞

(
1 + 𝑥

𝑛

)𝑛
= lim

𝑛→∞

(
1 + 𝑥

𝑛𝑁

)𝑛𝑁
= (𝑒𝑥/𝑁 )𝑁 .

Thus the limit 𝑒𝑥 in (2.21) exists for 𝑥 > 0, and 𝑒𝑥 = (𝑒𝑥/𝑁 )𝑁 .
When 0 < 𝑥 < 1, the identity (2.22) implies

1 − 𝑥𝑛 < 𝑛(1 − 𝑥).

Replacing 𝑥 by 1 − 𝑥/𝑛2 results in

1 >
(
1 − 𝑥

𝑛2

)𝑛
> 1 − 𝑥

𝑛
,

when 0 < 𝑥 < 𝑛2.
As a consequence,

lim
𝑛→∞

(
1 − 𝑥

𝑛

)𝑛
= lim

𝑛→∞

(
1 − 𝑥2

𝑛2

)𝑛
(
1 + 𝑥

𝑛

)𝑛 =
1
𝑒𝑥

.

This shows the limit in (2.21) exists for 𝑥 < 0, and

𝑒−𝑥 =
1
𝑒𝑥

, 𝑥 > 0.

Thus the limit 𝑒𝑥 exists and is positive for all real 𝑥.
Above we derived (𝑒𝑥/𝑁 )𝑁 = 𝑒𝑥 when 𝑥 > 0. This is also true when 𝑥 < 0, since

(𝑒𝑥/𝑁 )𝑁 = 1/(𝑒−𝑥/𝑁 )𝑁 = 1/𝑒−𝑥 = 𝑒𝑥 .

5 An increasing sequence always has a (possibly infinite) limit.
6 If a sequence converges to a limit, then any subsequence converges to the same limit.
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Replacing 𝑥 by 𝑁𝑥, (𝑒𝑥)𝑁 = 𝑒𝑁 𝑥 follows. We conclude

(𝑒𝑥)𝑛 = 𝑒𝑛𝑥 , (𝑒𝑥)1/𝑚 = 𝑒𝑥/𝑚, 𝑛, 𝑚 ≥ 1,

when 𝑥 real. As a consequence, when 𝑥 = 𝑛/𝑚 is a rational, 𝑒𝑥 = 𝑒𝑛/𝑚 is the 𝑛-th
power of the 𝑚-th root of 𝑒.

Since 𝑎1/𝑛 → 1 as 𝑛 → ∞ for any 𝑎 > 0,

lim
𝑛→∞

𝑒𝑥/𝑛 = lim
𝑛→∞

(𝑒𝑥)1/𝑛 = 1. (2.23)

For 𝑥 > 0 and 𝑦 > 0 and 𝑛 ≥ 𝑁 ,(
1 + 𝑥 + 𝑦

𝑛

)
≤

(
1 + 𝑥

𝑛

) (
1 + 𝑦

𝑛

)
≤

(
1 + 𝑥 + 𝑦

𝑛

) (
1 + 𝑥𝑦

𝑛𝑁

)
.

Raising to the 𝑛-th power and passing to the limit 𝑛 → ∞,

𝑒𝑥+𝑦 ≤ 𝑒𝑥𝑒𝑦 ≤ 𝑒𝑥+𝑦𝑒𝑥𝑦/𝑁 , 𝑥 > 0, 𝑦 > 0, 𝑁 ≥ 1. (2.24)

Taking the limit as 𝑁 → ∞ in (2.24) yields the

Real Law of Exponents

For all 𝑥 and 𝑦 real,
𝑒𝑥𝑒𝑦 = 𝑒𝑥+𝑦 .

We established this when 𝑥 > 0 and 𝑦 > 0. To establish the case 𝑥 < 0 and 𝑦 < 0,

𝑒𝑥𝑒𝑦 =
1

𝑒−𝑥𝑒−𝑦
=

1
𝑒 (−𝑥)+(−𝑦)

=
1

𝑒−(𝑥+𝑦)
= 𝑒𝑥+𝑦 .

When 𝑥 and 𝑦 have opposite signs, since the law of exponents is symmetric, we
may assume 𝑥 > 0 and 𝑦 < 0. Here there are two sub-cases. If 𝑥 + 𝑦 > 0, then
𝑒𝑥+𝑦/𝑒𝑦 = 𝑒𝑥+𝑦𝑒−𝑦 = 𝑒𝑥 . If 𝑥 + 𝑦 < 0, 𝑒𝑥/𝑒𝑥+𝑦 = 𝑒𝑥𝑒−(𝑥+𝑦) = 𝑒−𝑦 = 1/𝑒𝑦 . This
establishes the law.

For 1 ≤ 𝑘 ≤ 𝑛,

1
𝑛𝑘

(
𝑛

𝑘

)
=

1
𝑘!

(
1 − 1

𝑛

) (
1 − 2

𝑛

)
. . .

(
1 − 𝑘 − 2

𝑛

) (
1 − 𝑘 − 1

𝑛

)
≤ 1

(𝑘 − 1)!

(
1 − 1

𝑛

) (
1 − 2

𝑛

)
. . .

(
1 − 𝑘 − 2

𝑛

)
=

1
𝑛𝑘−1

(
𝑛

𝑘 − 1

)
,

so
(𝑛
𝑘

)
/𝑛𝑘 is decreasing in 𝑘 , for 𝑛 fixed. By the binomial theorem, for 𝑥 > 0,
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1 + 𝑥

𝑛

)𝑛
− 1 − 𝑥 =

𝑛∑
𝑘=2

1
𝑛𝑘

(
𝑛

𝑘

)
𝑥𝑘

≤
𝑛∑

𝑘=2

1
𝑛𝑘−2

(
𝑛

𝑘 − 2

)
𝑥𝑘

= 𝑥2
𝑛−2∑
𝑘=0

1
𝑛𝑘

(
𝑛

𝑘

)
𝑥𝑘

< 𝑥2
𝑛∑

𝑘=0

1
𝑛𝑘

(
𝑛

𝑘

)
𝑥𝑘

= 𝑥2
(
1 + 𝑥

𝑛

)𝑛
.

Passing to the limit 𝑛 → ∞,

0 < 𝑒𝑥 − 1 − 𝑥 ≤ 𝑥2𝑒𝑥 , 𝑥 > 0. (2.25)

We claim
|𝑒𝑥 − 1 − 𝑥 | ≤ 𝑥2𝑒 |𝑥 | (2.26)

for 𝑥 real. When 𝑥 = 0, this is clear. For 𝑥 > 0, this is (2.25). For 𝑥 < 0, insert −𝑥 for
𝑥 in (2.25) and multiply by 𝑒𝑥 , to obtain

0 < 1 − 𝑒𝑥 + 𝑥𝑒𝑥 ≤ 𝑥2.

Since 𝑒𝑥 < 1 and 𝑥 < 0, this implies

0 > 𝑒𝑥 − 1 − 𝑥 ≥ 𝑥𝑒𝑥 − 𝑥 − 𝑥2 > −𝑥2 ≥ −𝑥2𝑒 |𝑥 | ,

which is (2.26) for 𝑥 < 0. Dividing by 𝑥 then passing to the limit 𝑥 → 0 in (2.26),
we obtain

lim
𝑥→0

𝑒𝑥 − 1
𝑥

= 1,

hence the derivative of 𝑒𝑥 at 𝑥 = 0 exists and equals 1. By the law of exponents,

lim
ℎ→0

𝑒𝑥+ℎ − 𝑒𝑥

ℎ
= lim

ℎ→0

𝑒𝑥𝑒ℎ − 𝑒𝑥

ℎ
= 𝑒𝑥 · lim

ℎ→0

𝑒ℎ − 1
ℎ

= 𝑒𝑥 ,

for all 𝑥 real. We have derived

Exponential Derivative

For all 𝑥 real,
(𝑒𝑥) ′ = 𝑒𝑥 .
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It follows that 𝑒𝑥 has derivatives of all orders, with

𝑑𝑛

𝑑𝑥𝑛
𝑒𝑥 = 𝑒𝑥 , 𝑛 ≥ 0.

2.5 Real Taylor Series

Let 𝑓 (𝑥) be a real function of a real variable 𝑥, and suppose we have derivatives of all
orders 𝑓 ′, 𝑓 ′′, 𝑓 ′′′, . . . . We are most interested in the cases 𝑓 (𝑥) = 𝑒𝑥 , 𝑓 (𝑥) = sin 𝑥,
𝑓 (𝑥) = cos 𝑥.

For such a function, we can write the polynomial

𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑓 ′′(0) 𝑥
2

2!
+ 𝑓 ′′′(0) 𝑥

3

3!
+ · · · + 𝑓 (𝑛) (0) 𝑥

𝑛

𝑛!
.

This is the Taylor polynomial 𝑇𝑛 (𝑥) of degree 𝑛. The simplest example is 𝑓 (𝑥) =
𝑥𝑛/𝑛!. In this case, check that 𝑇𝑛 (𝑥) = 𝑓 (𝑥).

Taylor Polynomial

For each 𝑛 ≥ 0, we have

𝑓 (𝑥) = 𝑇𝑛 (𝑥) + 𝑅𝑛 (𝑥),

where the remainder is

𝑅𝑛 (𝑥) =
∫ 𝑥

0

∫ 𝑥1

0
· · ·

∫ 𝑥𝑛

0
𝑓 (𝑛+1) (𝑥𝑛+1) 𝑑𝑥𝑛+1𝑑𝑥𝑛 . . . 𝑑𝑥1. (2.27)

This is valid whether 𝑥 is positive or negative.

Proof Apply the real fundamental theorem of calculus

𝑓 (𝑏) − 𝑓 (𝑎) =
∫ 𝑏

𝑎
𝑓 ′(𝑥) 𝑑𝑥 (2.28)

repeatedly. For example, with 𝑏 = 𝑥, 𝑎 = 0,

𝑓 (𝑥) = 𝑓 (0) +
∫ 𝑥

0
𝑓 ′(𝑥1) 𝑑𝑥1.

Now repeat this with 𝑓 ′ playing the role of 𝑓 , and with 𝑏 = 𝑥1 and 𝑎 = 0, to get

𝑓 ′(𝑥1) = 𝑓 ′(0) +
∫ 𝑥1

0
𝑓 ′′(𝑥2) 𝑑𝑥2.
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Plugging the last equation into the previous one yields

𝑓 (𝑥) = 𝑓 (0) + 𝑓 ′(0)𝑥 +
∫ 𝑥

0

∫ 𝑥1

0
𝑓 ′′(𝑥2) 𝑑𝑥2𝑑𝑥1.

If we repeat this with 𝑓 ′′ playing the role of 𝑓 , and with 𝑏 = 𝑥2 and 𝑎 = 0, we get

𝑓 (𝑥) = 𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑓 ′′(0) 𝑥
2

2
+

∫ 𝑥

0

∫ 𝑥1

0

∫ 𝑥2

0
𝑓 ′′(𝑥3) 𝑑𝑥3𝑑𝑥2𝑑𝑥1

and so on. □

The simplest example is 𝑓 (𝑥) = 𝑥𝑛+1/(𝑛 + 1)!. In this case, check that 𝑇𝑛 (𝑥) = 0
which implies 𝑅𝑛 (𝑥) = 𝑓 (𝑥). Since for this 𝑓 (𝑥), 𝑓 (𝑛+1) (𝑥) ≡ 1, this is saying∫ 𝑥

0

∫ 𝑥1

0
· · ·

∫ 𝑥𝑛

0
1 𝑑𝑥𝑛+1𝑑𝑥𝑛 . . . 𝑑𝑥1 =

𝑥𝑛+1

(𝑛 + 1)! . (2.29)

The Taylor polynomial is the 𝑛-th partial sum of the real Taylor series

∞∑
𝑛=0

𝑓 (𝑛) (0) 𝑥
𝑛

𝑛!
= 𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑓 ′′(0) 𝑥

2

2!
+ 𝑓 ′′′(0) 𝑥

3

3!
+ . . .

As a consequence,

Real Taylor Series

Let 𝑅𝑛 (𝑥) be as in (2.27). If

lim
𝑛→∞

𝑅𝑛 (𝑥) = 0, (2.30)

then the Taylor series converges to 𝑓 (𝑥),

𝑓 (𝑥) =
∞∑
𝑛=0

𝑓 (𝑛) (0) 𝑥
𝑛

𝑛!
= 𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑓 ′′(0) 𝑥

2

2!
+ 𝑓 ′′′(0) 𝑥

3

3!
+ . . . .

The Taylor polynomials of cos 𝑥 and sin 𝑥 are

sin 𝑥 = 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− · · · + 𝑅𝑛 (𝑥)

and
cos 𝑥 = 1 − 𝑥2

2!
+ 𝑥4

4!
− · · · + 𝑅𝑛 (𝑥).

Now write the Taylor polynomial for 𝑒𝑥 ,
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𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ · · · + 𝑥𝑛

𝑛!
+ 𝑅𝑛 (𝑥).

If 𝑥 > 0, then 𝑅𝑛 (𝑥) is positive [look at its formula in detail: if a function is positive,
the area under the graph is positive]. If you remove 𝑅𝑛 (𝑥) from this last equation,
you get

𝑒𝑥 > 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ · · · + 𝑥𝑛

𝑛!
(2.31)

for 𝑥 positive and any 𝑛 ≥ 0. Let 𝑠𝑛 be the sum in (2.31). When 𝑥 is positive, the
sequence (𝑠𝑛) is increasing and bounded by 𝑒𝑥 . By the completeness property of
real numbers, (𝑠𝑛) has a limit. Since 𝑠𝑛 is the 𝑛-th partial sum of the series

1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ . . . , (2.32)

this means the series (2.32) converges. This for 𝑥 > 0.
By the 𝑛-th term test (Theorem 3.1), it follows

lim
𝑛→∞

𝑥𝑛

𝑛!
= 0, 𝑥 > 0. (2.33)

Let 𝑥 be a positive real. Look at the formula for 𝑅𝑛 (𝑥) for 𝑒𝑥 . In this formula,

𝑥𝑛+1 < 𝑥𝑛 < 𝑥𝑛−1 < · · · < 𝑥1 < 𝑥,

so 𝑒𝑥𝑛+1 < 𝑒𝑥 . Therefore by (2.29),

0 < 𝑅𝑛 (𝑥) < 𝑒𝑥
∫ 𝑥

0

∫ 𝑥1

0
· · ·

∫ 𝑥𝑛

0
1 𝑑𝑥𝑛+1𝑑𝑥𝑛 . . . 𝑑𝑥1 = 𝑒𝑥 · 𝑥𝑛+1

(𝑛 + 1)! .

Now we deal with the case of 𝑥 negative. Instead of writing 𝑅𝑛 (𝑥) for 𝑒𝑥 for
𝑥 negative, we write 𝑅𝑛 (𝑥) for 𝑒−𝑥 for 𝑥 positive. This will make the calculation
clearer. Then

𝑅𝑛 (𝑥) = (−1)𝑛+1
∫ 𝑥

0

∫ 𝑥1

0
· · ·

∫ 𝑥𝑛

0
𝑒−𝑥𝑛+1 𝑑𝑥𝑛+1𝑑𝑥𝑛 . . . 𝑑𝑥1,

so, since 𝑒−𝑥 < 1, by (2.29) again,

|𝑅𝑛 (𝑥) | =
∫ 𝑥

0

∫ 𝑥1

0
· · ·

∫ 𝑥𝑛

0
𝑒−𝑥𝑛+1 𝑑𝑥𝑛+1𝑑𝑥𝑛 . . . 𝑑𝑥1 <

𝑥𝑛+1

(𝑛 + 1)! .

Combining these results, for any real 𝑥, positive or negative, we have

|𝑅𝑛 (𝑥) | < 𝑒 |𝑥 | · |𝑥 |𝑛+1

(𝑛 + 1)! , 𝑛 = 0, 1, 2, . . . (2.34)

Of course, when 𝑥 = 0, 𝑅𝑛 (0) = 0, so there is nothing to check there.
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For 𝑓 (𝑥) = sin 𝑥 and 𝑓 (𝑥) = cos 𝑥, since | 𝑓 (𝑛) (𝑥) | ≤ 1 for any real 𝑥 and any
𝑛 ≥ 0, by (2.29), we have

|𝑅𝑛 (𝑥) | ≤
|𝑥 |𝑛+1

(𝑛 + 1)! , 𝑛 = 0, 1, 2, . . .

By (2.33), in each of the three cases 𝑒𝑥 , sin 𝑥, cos 𝑥, (2.30) is valid, for any real 𝑥.
From this we conclude the everywhere convergent Taylor series

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ . . . (2.35)

for all 𝑥 real and
sin 𝑥 = 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− . . .

for all 𝑥 real and
cos 𝑥 = 1 − 𝑥2

2!
+ 𝑥4

4!
− . . .

for all 𝑥 real.

Exercises

Problem 2.1 Verify 𝜔3 = 1.

Problem 2.2 Show the square of a twelfth root of unity is a sixth root of unity. Use
this to compute the principal sixth root of unity.

Problem 2.3 (2.35) shows

𝑒 = 1 + 1 + 1
2!

+ 1
3!

+ 1
4!

+ . . .

Show 2.5 < 𝑒 < 3.

Problem 2.4 Let 𝜔 be the 𝑛-th root of unity. Show

1 + 𝜔 + 𝜔2 + · · · + 𝜔𝑛−1 = 0.



Chapter 3
Euler’s Identity

The goal of this chapter is to define the complex exponential and to derive

Euler’s Identity

𝑒𝑖 𝜃 = cos 𝜃 + 𝑖 sin 𝜃. (3.1)

This implies
𝑒𝑖 𝜋 + 1 = 0,

which relates the five numbers 0, 1, 𝑖, 𝑒, 𝜋 in one equation.
Using his identity, Euler makes the fundamental theorem of trigonometry trans-

parent, by reducing it to the complex law of exponents,

𝑒𝑖 𝜃𝑒𝑖 𝜃
′
= 𝑒𝑖 (𝜃+𝜃

′) .

Ultimately, this law reflects the symmetry of the unit circle, each point 𝑧 of which
corresponds to a rotation 𝜃 of the plane.

It is natural to search for laws of exponents that reflect other symmetries, such as
rotations in three dimensional space. Here, rotations 𝑒𝑖𝑧 are matrices, and the law of
exponents fails. Correction terms must be inserted,

𝑒𝑖𝑧𝑒𝑖𝑧
′
= 𝑒𝑖 (𝑧+𝑧

′+[𝑧,𝑧′ ]+... ) ,

the first term being the so-called bracket [𝑧, 𝑧′] of 𝑧 and 𝑧′. Because symmetry lies at
the basis of many phenomena, this and other generalized laws are widely applicable.
Of course, in this text, we derive only the law of exponents in the complex plane.

49
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3.1 Triangle Inequality

Let 𝑧 = 𝑥 + 𝑖𝑦 and 𝑤 = 𝑢 + 𝑖𝑣 be complex numbers. Let �̄� = 𝑢 − 𝑖𝑣 be the conjugate
of 𝑤, let Re(𝑤) be the real part of 𝑤, and let |𝑧 | =

√
𝑥2 + 𝑦2 be the absolute value of

𝑧. Then 𝑤 + �̄� = 2Re(𝑤) and 𝑧𝑧 = |𝑧 |2.
Since

𝑧�̄� = (𝑥 + 𝑖𝑦) (𝑢 − 𝑖𝑣) = (𝑥𝑢 + 𝑦𝑣) + 𝑖(𝑦𝑢 − 𝑥𝑣),
we have

Re(𝑧�̄�) = 𝑥𝑢 + 𝑦𝑣,

which is the standard dot product of two vectors (𝑥, 𝑦) and (𝑢, 𝑣) in the plane.
Expanding |𝑧 + 𝑤 |2 yields

|𝑧 + 𝑤 |2 = (𝑧 + 𝑤) (𝑧 + 𝑤)
= (𝑧 + 𝑤) (𝑧 + �̄�) = 𝑧𝑧 + 𝑧�̄� + 𝑤𝑧 + 𝑤�̄�

= |𝑧 |2 + 2Re(𝑧�̄�) + |𝑤 |2.

Cauchy-Schwarz inequality

For any complex numbers 𝑧, 𝑤, we have

|Re(𝑧�̄�) | ≤ |𝑧 | |𝑤 |. (3.2)

Proof Let 𝑡 be a real number. If we replace 𝑤 by 𝑡𝑤 in the last equation, we get

|𝑧 + 𝑡𝑤 |2 = |𝑧 |2 + 2𝑡Re(𝑧�̄�) + 𝑡2 |𝑤 |2.

Since this is a quadratic in 𝑡 which is always nonnegative, it has at most one root.
Hence its discriminant must be ≤ 0. But the discriminant is

4 (Re(𝑧�̄�))2 − 4|𝑧 |2 |𝑤 |2,

so we get (3.2). □

Triangle Inequality

For any complex numbers 𝑧, 𝑤, we have

|𝑧 + 𝑤 | ≤ |𝑧 | + |𝑤 |. (3.3)

Proof By the Cauchy-Schwarz inequality,
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|𝑧 + 𝑤 |2 = |𝑧 |2 + 2Re(𝑧�̄�) + |𝑤 |2 ≤ |𝑧 |2 + 2|𝑧 | |𝑤 | + |𝑤 |2 = (|𝑧 | + |𝑤 |)2 .

Taking square roots yields (3.3). □

In general, if 𝑧1, 𝑧2, . . . , 𝑧𝑛 are complex numbers, then the triangle inequality is

|𝑧1 + 𝑧2 + · · · + 𝑧𝑛 | ≤ |𝑧1 | + |𝑧2 | + · · · + |𝑧𝑛 |.

This is derived by applying (3.3) repeatedly.
A sequence is an infinite list of complex numbers 𝑧0, 𝑧1, 𝑧2, . . . . Sequences are

denoted (𝑧𝑛). We say a sequence (𝑧𝑛) approaches a complex number 𝑧, or converges
to 𝑧, or the limit of (𝑧𝑛) is 𝑧, if

lim
𝑛→∞

|𝑧𝑛 − 𝑧 | = 0.

The sum of finitely many convergent sequences is convergent, with limit equal to
the sum of their limits. The same result is valid for the difference, the product, and
the quotient, under the usual conditions. We use these properties in what follows
without comment.

We say a sequence (𝑧𝑛) is Cauchy if the terms approach each other, in the sense

lim
𝑛,𝑚→∞

|𝑧𝑛 − 𝑧𝑚 | = 0.

If a sequence (𝑧𝑛) converges to a limit 𝑧, then it’s clear the sequence is Cauchy,
because, by the triangle inequality,

lim
𝑛,𝑚→∞

|𝑧𝑛 − 𝑧𝑚 | ≤ lim
𝑛,𝑚→∞

(|𝑧𝑛 − 𝑧 | + |𝑧 − 𝑧𝑚 |) = 0 + 0 = 0.

The converse is a basic property of complex numbers.

Completeness Property

Let (𝑧𝑛) be a sequence of complex numbers. If the sequence is Cauchy, then
the sequence has a limit.

Informally speaking, if the terms of the sequence approach each other, then the
terms of the sequence approach something.

Proof Let 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛. Since

|𝑥𝑛 − 𝑥𝑚 | ≤ |𝑧𝑛 − 𝑧𝑚 |, |𝑦𝑛 − 𝑦𝑚 | ≤ |𝑧𝑛 − 𝑧𝑚 |,

the real sequences (𝑥𝑛) and (𝑦𝑛) are Cauchy. By the completeness property of the
real numbers, there are reals 𝑥, 𝑦 with 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦. Let 𝑧 = 𝑥 + 𝑖𝑦. Since

|𝑧𝑛 − 𝑧 | ≤ |𝑥𝑛 − 𝑥 | + |𝑦𝑛 − 𝑦 |,
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𝑧𝑛 → 𝑧 follows. □

3.2 Polynomials

A complex function 𝑤 = 𝑓 (𝑧) can be thought as two real functions 𝑤 = 𝑢 + 𝑖𝑣, each
a function of two real variables 𝑧 = 𝑥 + 𝑖𝑦,

𝑤 = 𝑢 + 𝑖𝑣 = 𝑓 (𝑧) = 𝑓 (𝑥 + 𝑖𝑦).

Thus 𝑤 = 𝑓 (𝑧) can be thought of as two real functions (𝑢, 𝑣) of two real variables
(𝑥, 𝑦).

deg 𝑛 poly has at most 𝑛 roots. 𝑝 and 𝑞 deg 𝑛 and 𝑝 and 𝑞 have same roots implies
𝑝 = 𝑞.

𝑧𝑛 − 1 =
𝑛−1∏
𝑘=0

(𝑧 − 𝜔𝑘 ).

1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑛−1 =
𝑧𝑛 − 1
𝑧 − 1

=
𝑛−1∏
𝑘=1

(𝑧 − 𝜔𝑘 ).

Not complete ...

3.3 Series

If (𝑧𝑛) is a sequence, for each 𝑛 ≥ 0, let

𝑠𝑛 = 𝑧0 + 𝑧1 + 𝑧2 + · · · + 𝑧𝑛.

Then 𝑠𝑛 is called the 𝑛-th partial sum. So

𝑠0 = 𝑧0

𝑠1 = 𝑧0 + 𝑧1

𝑠2 = 𝑧0 + 𝑧1 + 𝑧2

𝑠3 = 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3

. . .

(3.4)

This way, from the sequence (𝑧𝑛), we obtain another sequence (𝑠𝑛).
A series

∑
𝑧𝑛 is an expression of the form

∞∑
𝑛=0

𝑧𝑛 = 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 + . . .
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Let (𝑠𝑛) be the sequence of 𝑛-th partial sums of the sequence (𝑧𝑛), and let 𝑧 be a
complex number. We say the series

∑
𝑧𝑛 sums to 𝑧, or converges to 𝑧, or has limit

𝑧, if
lim
𝑛→∞

𝑠𝑛 = 𝑧.

In this case, we write

𝑧 =
∞∑
𝑛=0

𝑧𝑛 = 𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 + . . .

The term-by-term sum of finitely many convergent series is convergent, with
limit equal to the sum of their limits. We use this property in what follows without
comment.

Let (𝑠𝑛) be the sequence of 𝑛-th partial sums of the sequence (𝑧𝑛), and suppose
the series

∑
𝑧𝑛 converges to 𝑧. The 𝑛-th tail of the series is

𝑡𝑛 =
∞∑

𝑘=𝑛+1
𝑧𝑘 .

Since 𝑡𝑛 = 𝑧 − 𝑠𝑛, 𝑡𝑛 vanishes as 𝑛 → ∞,

𝑡𝑛 =
∞∑

𝑘=𝑛+1
𝑧𝑘 = 𝑧 − 𝑠𝑛 → 0, 𝑛 → ∞.

The most basic seriesis the geometric series

1
1 − 𝑧

=
∞∑
𝑛=0

𝑧𝑛 = 1 + 𝑧 + 𝑧2 + 𝑧3 + . . . , |𝑧 | < 1. (3.5)

To see this, by cross-multiplying, check

𝑠𝑛 = 1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑛 =
1 − 𝑧𝑛+1

1 − 𝑧
, (3.6)

hence ���� 1
1 − 𝑧

− (1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑛)
���� = |𝑧 |𝑛+1

|1 − 𝑧 | .

When |𝑧 | < 1, the limit of |𝑧 |𝑛+1 as 𝑛 → ∞ is 0. Thus the 𝑛-th partial sum 𝑠𝑛 of the
series (3.5) converges to 1/(1 − 𝑧) for |𝑧 | < 1.

From (3.6), the 𝑛-th tail of the geometric series is

𝑡𝑛 =
1

1 − 𝑧
−

(
1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑛

)
=

𝑧𝑛+1

1 − 𝑧
. (3.7)

A basic fact is the
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3.1. 𝑛-th Term Test

If a series
∑
𝑧𝑛 converges, then

lim
𝑛→∞

𝑧𝑛 = 0.

Proof Let (𝑠𝑛) be the partial sums of the series. Since the series converges to some
limit 𝑧, we have 𝑠𝑛 → 𝑧 as 𝑛 → ∞. Also we have 𝑠𝑛−1 → 𝑧 as 𝑛 → ∞. Hence

𝑧𝑛 = 𝑠𝑛 − 𝑠𝑛−1 → 0

as 𝑛 → ∞. □

Informally, this says if you stack infinitely many boxes on top of each other, and
the top box never reaches the ceiling, then the limit of the box heights is zero. Of
course the converse of the 𝑛-th term test is not true.

3.2. Absolute Convergence

Let 𝑧0, 𝑧1, 𝑧2, . . . be complex numbers. If the positive series

∞∑
𝑛=0

|𝑧𝑛 |

is finite, then the complex series

∞∑
𝑛=0

𝑧𝑛

converges, and ����� ∞∑
𝑛=0

𝑧𝑛

����� ≤ ∞∑
𝑛=0

|𝑧𝑛 |.

Proof Let 𝑟𝑛 = |𝑧𝑛 | and let (𝑠𝑛) be the sequence of the partial sums of
∑
𝑧𝑛. Since

the series
∑
𝑟𝑛 converges, the sequence of its partial sums is Cauchy, so

𝑛∑
𝑘=𝑚+1

𝑟𝑘 → 0, 𝑚, 𝑛 → ∞.

Then, for 𝑛 > 𝑚,

𝑠𝑛 − 𝑠𝑚 = 𝑧𝑚+1 + · · · + 𝑧𝑛 =
𝑛∑

𝑘=𝑚+1
𝑧𝑘 .
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By the triangle inequality,

|𝑠𝑛 − 𝑠𝑚 | =
����� 𝑛∑
𝑘=𝑚+1

𝑧𝑘

����� ≤ 𝑛∑
𝑘=𝑚+1

|𝑧𝑘 | =
𝑛∑

𝑘=𝑚+1
𝑟𝑘 .

Hence
|𝑠𝑛 − 𝑠𝑚 | → 0, 𝑚, 𝑛 → ∞..

Thus (𝑠𝑛) is Cauchy. By the completeness property, (𝑠𝑛) is convergent, hence
∑
𝑧𝑛

is convergent. □

When the positive series
∑ |𝑧𝑛 | is finite, we say the series

∑
𝑧𝑛 converges abso-

lutely.
Next we discuss multiplication of series. Suppose we have two sequences 𝑧0, 𝑧1,

𝑧2, . . . and 𝑧′0, 𝑧′1, 𝑧′2, . . . . How do we multiply the series

(𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 + . . . )(𝑧′0 + 𝑧′1 + 𝑧′2 + 𝑧′3 + . . . )?

The simplest way to multiply is term-by-term to get

𝑧′′0 + 𝑧′′1 + 𝑧′′2 + 𝑧′′3 + . . . ,

where

𝑧′′0 = 𝑧0𝑧
′
0,

𝑧′′1 = 𝑧0𝑧
′
1 + 𝑧1𝑧

′
0,

𝑧′′2 = 𝑧0𝑧
′
2 + 𝑧1𝑧

′
1 + 𝑧2𝑧

′
0,

𝑧′′3 = 𝑧0𝑧
′
3 + 𝑧1𝑧

′
2 + 𝑧2𝑧

′
1 + 𝑧3𝑧

′
0,

and in general
𝑧′′𝑘 = 𝑧0𝑧

′
𝑘 + 𝑧1𝑧

′
𝑘−1 + · · · + 𝑧𝑘−1𝑧

′
1 + 𝑧𝑘 𝑧

′
0.

Thus, to obtain 𝑧′′𝑘 , we are grouping together all terms 𝑧𝑛𝑧′𝑚 with 𝑛 + 𝑚 = 𝑘 .
Therefore we obtain a third series

∑
𝑧′′𝑘 , the product series. When does the

product series converge, and when does it equal the product of
∑
𝑧𝑛 and

∑
𝑧′𝑚?

Assume first the terms 𝑧𝑛, 𝑧′𝑛, 𝑛 ≥ 0, are positive, let 𝑠𝑛, 𝑠′𝑛 be the 𝑛-th partial
sums of the series

∑
𝑧𝑛,

∑
𝑧′𝑛, and let 𝑠∞, 𝑠′∞ be the sums of the series. Let 𝑧′′𝑘

be as above, let 𝑠′′𝑛 and 𝑠′′∞ be the 𝑛-th partial sum and the sum of the series
∑
𝑧′′𝑛

respectively. Then (𝑠𝑛), (𝑠′𝑛), (𝑠′′𝑛 ) are increasing sequences with limits 𝑠∞, 𝑠′∞, 𝑠′′∞
respectively.

Let 𝑁 ≥ 0. Multiplying out the terms in the product 𝑠𝑁 𝑠′𝑁 , every term in 𝑠′′𝑁
appears as a term in the expansion of 𝑠𝑁 𝑠′𝑁 . In more detail, if 𝑛+𝑚 ≤ 𝑁 , then 𝑛 ≤ 𝑁
and 𝑚 ≤ 𝑁 . Since the terms are positive, 𝑠𝑁 𝑠′𝑁 ≥ 𝑠′′𝑁 follows. Passing to the limit
𝑁 → ∞, we obtain 𝑠∞𝑠′∞ ≥ 𝑠′′∞, or( ∞∑

𝑛=0
𝑧𝑛

) ( ∞∑
𝑚=0

𝑧′𝑚

)
≥

∞∑
𝑘=0

( ∑
𝑛+𝑚=𝑘

𝑧𝑛𝑧
′
𝑚

)
.
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Conversely, if 𝑛 ≤ 𝑁 and 𝑚 ≤ 𝑁 , then 𝑛 + 𝑚 ≤ 2𝑁 . Thus every term in the
expansion of 𝑠𝑁 𝑠′𝑁 appears as a term in 𝑠′′2𝑁 , hence 𝑠𝑁 𝑠′𝑁 ≤ 𝑠′′2𝑁 . Passing to the
limit 𝑁 → ∞, we obtain 𝑠∞𝑠′∞ ≤ 𝑠′′∞, or( ∞∑

𝑛=0
𝑧𝑛

) ( ∞∑
𝑚=0

𝑧′𝑚

)
≤

∞∑
𝑘=0

( ∑
𝑛+𝑚=𝑘

𝑧𝑛𝑧
′
𝑚

)
.

This establishes (3.8) below, when the series are positive. For complex series,
when the series converge absolutely, we can derive the same result.

3.3. Products of Series

Let (𝑧𝑛), (𝑧′𝑛) be sequences of complex numbers. If these sequences are
positive, then ( ∞∑

𝑛=0
𝑧𝑛

) ( ∞∑
𝑚=0

𝑧′𝑚

)
=

∞∑
𝑘=0

( ∑
𝑛+𝑚=𝑘

𝑧𝑛𝑧
′
𝑚

)
. (3.8)

If the sequences are complex, and both series on the left of (3.8) converge
absolutely, then the series on the right of (3.8) converges absolutely, and the
equality (3.8) holds.

When the series are positive, as we have seen above, (3.8) holds even if one side
is infinite, in which case so is the other side.

Proof Let 𝑟𝑛 = |𝑧𝑛 |, 𝑟 ′𝑛 = |𝑧′𝑛 |, 𝑛 ≥ 0. By assumption, the 𝑛-th partial sums of the
series

∑
𝑟𝑛,

∑
𝑟 ′𝑛 converge, so the tails vanish

∞∑
𝑛=𝑁+1

𝑟𝑛 → 0,
∞∑

𝑚=𝑁+1
𝑟 ′𝑚 → 0, 𝑁 → ∞. (3.9)

By the triangle inequality and (3.8) in the positive case,

∞∑
𝑘=0

����� ∑
𝑛+𝑚=𝑘

𝑧𝑛𝑧
′
𝑚

����� ≤ ∞∑
𝑘=0

( ∑
𝑛+𝑚=𝑘

𝑟𝑛𝑟
′
𝑚

)
=

( ∞∑
𝑛=0

𝑟𝑛

) ( ∞∑
𝑚=0

𝑟 ′𝑚

)
< ∞.

By Theorem 3.2, it follows the series
∑
𝑧′′𝑘 converge absolutely.

Let 𝑠𝑁 , 𝑠′𝑁 , 𝑠′′𝑁 , 𝑠∞, 𝑠′∞, 𝑠′′∞ be as above. The goal is to establish 𝑠∞𝑠′∞ = 𝑠′′∞. Since
every term in the expansion of 𝑠𝑁 𝑠′𝑁 appears in 𝑠′′2𝑁 , after canceling, the remaining
terms 𝑧𝑛𝑧′𝑚 in the difference

𝑠′′2𝑁 − 𝑠𝑁 𝑠′𝑁

satisfy 𝑛 > 𝑁 or 𝑚 > 𝑁 . These terms appear in the expansion of (𝑠2𝑁 − 𝑠𝑁 )𝑠′2𝑁 or
in the expansion of 𝑠2𝑁 (𝑠′2𝑁 − 𝑠′𝑁 ). By the triangle inequality,
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|𝑠′′2𝑁 − 𝑠𝑁 𝑠′𝑁 | ≤
( 2𝑁∑
𝑛=𝑁+1

𝑟𝑛

) ( 2𝑁∑
𝑚=0

𝑟 ′𝑚

)
+

( 2𝑁∑
𝑛=0

𝑟𝑛

) ( 2𝑁∑
𝑚=𝑁+1

𝑟 ′𝑚

)
.

Now let 𝑁 → ∞. By (3.9), we obtain

|𝑠′′∞ − 𝑠∞𝑠
′
∞ | ≤ 0 ·

( ∞∑
𝑛=0

𝑟 ′𝑛

)
+

( ∞∑
𝑛=0

𝑟𝑛

)
· 0 = 0.

This establishes (3.8). □

The simplest application of the series product formula is the square of the geo-
metric series. Since ∑

𝑛+𝑚=𝑘

𝑧𝑛𝑧𝑚 =
𝑘∑

𝑛=0
𝑧𝑘 = (𝑘 + 1)𝑧𝑘 ,

by (3.8), we have

1
(1 − 𝑧)2 =

( ∞∑
𝑛=0

𝑧𝑛

)2

=
∞∑
𝑘=0

(𝑘 + 1)𝑧𝑘 = 1 + 2𝑧 + 3𝑧2 + 4𝑧3 + . . . , (3.10)

valid for |𝑧 | < 1. By the 𝑛-th term test, this implies

lim
𝑛→∞

𝑛𝑧𝑛 = 0, |𝑧 | < 1. (3.11)

3.4 Complex Elementary Functions

By (2.35), the positive series

𝑒 |𝑧 | = 1 + |𝑧 | + |𝑧 |2
2!

+ |𝑧 |3
3!

+ . . .

converges for every complex 𝑧. By Theorem 3.2, it follows the complex series

exp 𝑧 = 𝑒𝑧 = 1 + 𝑧 + 𝑧2

2!
+ 𝑧3

3!
+ . . . (3.12)

and
sin 𝑧 = 𝑧 − 𝑧3

3!
+ 𝑧5

5!
− . . . (3.13)

and
cos 𝑧 = 1 − 𝑧2

2!
+ 𝑧4

4!
− . . . (3.14)

all converge for any complex 𝑧.
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We define exp 𝑧 = 𝑒𝑧 , sin 𝑧, cos 𝑧 by these series, for 𝑧 complex. Then, by the
results in §2.5, when 𝑧 = 𝑥 is real, the complex functions 𝑒𝑧 , sin 𝑧, cos 𝑧 equal the
real functions 𝑒𝑥 , sin 𝑥, cos 𝑥 discussed in Chapter 2. We now derive the law of
exponents for complex exponentials.

Complex Law of Exponents

For every 𝑧 and 𝑤 complex,

𝑒𝑧𝑒𝑤 = 𝑒𝑧+𝑤 .

Proof By the binomial theorem,

(𝑧 + 𝑤)𝑘 =
𝑘∑

𝑛=0

(
𝑘

𝑛

)
𝑧𝑛𝑤𝑘−𝑛 =

∑
𝑛+𝑚=𝑘

(
𝑘

𝑛

)
𝑧𝑛𝑤𝑚,

where (
𝑘

𝑛

)
=

𝑘!
𝑛!(𝑘 − 𝑛)! =

𝑘!
𝑛!𝑚!

is the binomial coefficient. Since the exponential series converges absolutely, by
(3.8),

𝑒𝑧𝑒𝑤 =

( ∞∑
𝑛=0

𝑧𝑛

𝑛!

) ( ∞∑
𝑚=0

𝑤𝑚

𝑚!

)
=

∞∑
𝑘=0

( ∑
𝑛+𝑚=𝑘

𝑧𝑛

𝑛!
𝑤𝑚

𝑚!

)
=

∞∑
𝑘=0

1
𝑘!

( ∑
𝑛+𝑚=𝑘

(
𝑘

𝑛

)
𝑧𝑛𝑤𝑚

)
=

∞∑
𝑘=0

1
𝑘!

(𝑧 + 𝑤)𝑘 = 𝑒𝑧+𝑤 .

Let 𝑒𝑛 (𝑧), 𝑠𝑛 (𝑧), and 𝑐𝑛 (𝑧) be the 𝑛-th partial sums of the series 𝑒𝑧 , sin 𝑧, and
cos 𝑧 respectively. Then

𝑒𝑛 (𝑖𝑧) = 𝑐𝑛 (𝑧) + 𝑖𝑠𝑛 (𝑧).

Passing to the limit 𝑛 → ∞ yields

Euler’s Identity

For 𝑧 complex,
𝑒𝑖𝑧 = cos 𝑧 + 𝑖 sin 𝑧.

When 𝑧 = 𝜃 is real, this is (3.1). From Euler’s identity, we have
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Exponential Form of sin and cos

For 𝑧 complex,

sin 𝑧 =
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
, cos 𝑧 =

𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2
.

We also have

Polar form

Every complex number 𝑧 except 0 may be written in the form

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖 𝜃 = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃,

where 𝑟 = |𝑧 | and 𝜃 is real, determined uniquely up to an integer multiple of
2𝜋. In particular, 𝑧 is on the unit circle iff

𝑧 = 𝑒𝑖 𝜃 .

𝑧-plane

𝜃
𝑟𝑒

𝑖𝑚

𝑒𝑖𝜃

10

Fig. 3.1 A point on the unit circle

Recalling the roots of unity from §2.2, we obtain



60 3 Euler’s Identity

Roots of Unity

Fix 𝑛 ≥ 1. Then
𝜔 = 𝑒2𝜋𝑖/𝑛 (3.15)

is the principal 𝑛-th root of unity, and the 𝑛 complex numbers

1, 𝜔, 𝜔2, 𝜔3, . . . , 𝜔𝑛−1

are the roots of the degree 𝑛 polynomial equation

𝑧𝑛 = 1.

Also, we can write

𝑤 = 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥 (cos 𝑦 + 𝑖 sin 𝑦).

Therefore we can write

𝑤 = 𝑒𝑧 ⇐⇒ 𝑤 = 𝑟𝑒𝑖 𝜃 where 𝑟 = 𝑒𝑥 , 𝜃 = 𝑦. (3.16)

Use this to show 𝑒𝑧 is periodic with period 2𝜋𝑖:

𝑒𝑧 = 𝑒𝑤 ⇐⇒ 𝑧 − 𝑤 is an integer multiple of 2𝜋𝑖.

Because of this, the natural domain for 𝑤 = 𝑒𝑧 is the region

𝐺 = {𝑧 = 𝑥 + 𝑖𝑦 : −𝜋 < 𝑦 < 𝜋,−∞ < 𝑥 < ∞}.

Then the image 𝑒𝐺 is the region (Figure 3.2)

𝑒𝐺 = {𝑤 = 𝑟𝑒𝑖 𝜃 : −𝜋 < 𝜃 < 𝜋, 𝑟 > 0}.

Notice 𝑒𝑧 is never zero, 𝑒𝑧 ≠ 0, so 𝑤 = 0 is not in the range of 𝑒𝑧 . Also the red
lines 𝑦 = ±𝜋𝑖 are mapped to the red negative real axis.

3.5 Complex Integrals

Let 𝑓 (𝑡) be a real-valued continuous function on a closed interval [𝑡1, 𝑡2]. Then,
from real calculus, the integral ∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 (3.17)
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𝑧-plane

𝑟𝑒

𝑖𝑚

𝐺

𝑖𝜋

−𝑖 𝜋

𝑤 = 𝑒𝑧

𝑟𝑒

𝑤-plane

𝑖𝑚

𝑒𝐺

0

Fig. 3.2 The map 𝑤 = 𝑒𝑧 from 𝐺 to 𝑒𝐺

is well-defined. When 𝑓 (𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) is complex-valued, we define the integral
by ∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 =
∫ 𝑡2

𝑡1

𝑢(𝑡) 𝑑𝑡 + 𝑖

∫ 𝑡2

𝑡1

𝑣(𝑡) 𝑑𝑡.

For example, ∫ 𝜋/2

0
𝑒𝑖𝑡 𝑑𝑡 =

∫ 𝜋/2

0
(cos 𝑡 + 𝑖 sin 𝑡) 𝑑𝑡

=
∫ 𝜋/2

0
cos 𝑡 𝑑𝑡 + 𝑖

∫ 𝜋/2

0
sin 𝑡 𝑑𝑡

= sin 𝑡
����𝜋/2
0

+ 𝑖 (− cos 𝑡)
����𝜋/2
0

= 1 + 𝑖.

Then the real part of the integral is the integral of the real part, and the imaginary
part of the integral is the integral of the imaginary part,

Re
(∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡
)
=

∫ 𝑡2

𝑡1

Re( 𝑓 (𝑡)) 𝑑𝑡, Im
(∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡
)
=

∫ 𝑡2

𝑡1

Im( 𝑓 (𝑡)) 𝑑𝑡.

Just like the real integral, the complex integral is linear: For any complex constants
𝑎 and 𝑏, we have∫ 𝑡2

𝑡1

(𝑎 𝑓 (𝑡) + 𝑏𝑔(𝑡)) 𝑑𝑡 = 𝑎

∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 + 𝑏

∫ 𝑡2

𝑡1

𝑔(𝑡) 𝑑𝑡.

We already know the following for real integrals.
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3.4. Triangle Inequality for Complex Integrals

Let 𝑓 (𝑡) be a complex-valued continuous function on a closed interval
[𝑡1, 𝑡2]. Then ����∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡
���� ≤ ∫ 𝑡2

𝑡1

| 𝑓 (𝑡) | 𝑑𝑡.

Proof Let 𝐼 be the integral (3.17). Since 𝐼 is a complex number, we can write
𝐼 = 𝑟𝑒𝑖 𝜃 . Then 𝑟 = 𝑒−𝑖 𝜃 𝐼. Taking the real parts of both sides, |𝐼 | = 𝑟 = Re(𝑒−𝑖 𝜃 𝐼).
Since 𝑒−𝑖 𝜃 is a constant,

|𝐼 | = 𝑒−𝑖 𝜃
∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 =
∫ 𝑡2

𝑡1

𝑒−𝑖 𝜃 𝑓 (𝑡) 𝑑𝑡.

Taking the real part of both sides,

|𝐼 | = Re
(∫ 𝑡2

𝑡1

𝑒−𝑖 𝜃 𝑓 (𝑡) 𝑑𝑡
)
=

∫ 𝑡2

𝑡1

Re
(
𝑒−𝑖 𝜃 𝑓 (𝑡)

)
𝑑𝑡.

But for any complex number 𝑎, Re(𝑎) ≤ |𝑎 |. Since |𝑒−𝑖 𝜃 | = 1, we obtain

|𝐼 | =
∫ 𝑡2

𝑡1

Re
(
𝑒−𝑖 𝜃 𝑓 (𝑡)

)
𝑑𝑡 ≤

∫ 𝑡2

𝑡1

|𝑒−𝑖 𝜃 𝑓 (𝑡) | 𝑑𝑡 =
∫ 𝑡2

𝑡1

| 𝑓 (𝑡) | 𝑑𝑡.

3.5. Complex Fundamental Theorem of Calculus

If 𝑓 (𝑡) is a continuous function and 𝐹 ′(𝑡) = 𝑓 (𝑡) on a closed interval [𝑡1, 𝑡2],
then ∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 = 𝐹 (𝑡2) − 𝐹 (𝑡1).

Proof This is an immediate consequence of the real fundamental theorem of calculus
(2.28). Let 𝑓 (𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) and 𝐹 (𝑡) = 𝑈 (𝑡) + 𝑖𝑉 (𝑡). Then 𝑈 ′(𝑡) = 𝑢(𝑡) and
𝑉 ′(𝑡) = 𝑣(𝑡), so∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 =
∫ 𝑡2

𝑡1

𝑢(𝑡) 𝑑𝑡 + 𝑖

∫ 𝑡2

𝑡1

𝑣(𝑡) 𝑑𝑡 = (𝑈 (𝑡2) −𝑈 (𝑡1)) + 𝑖(𝑉 (𝑡2) −𝑉 (𝑡1)),

which equals 𝐹 (𝑡2) − 𝐹 (𝑡1). □
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3.6. Substitution Under the Integral

If 𝑓 (𝑡) is a continuous function on a closed interval [𝑡1, 𝑡2], and 𝑡 in [𝑡1, 𝑡2]
is a continuously differentiable function 𝑡 (𝑠) of 𝑠 in [𝑠1, 𝑠2], then∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 =
∫ 𝑠2

𝑠1

𝑓 (𝑡 (𝑠)) 𝑡 ′(𝑠) 𝑑𝑠.

Proof Let 𝐹 (𝑡) be an anti-derivative for 𝑓 (𝑡), 𝐹 ′(𝑡) = 𝑓 (𝑡). By the chain rule,

𝑑

𝑑𝑠
𝐹 (𝑡 (𝑠)) = 𝐹 ′(𝑡 (𝑠))𝑡 ′(𝑠),

so 𝐹 (𝑡 (𝑠)) is anti-derivative for 𝑓 (𝑡 (𝑠))𝑡 ′(𝑠). Now 𝑡 (𝑠1) = 𝑡1 and 𝑡 (𝑠2) = 𝑡2, hence∫ 𝑡2

𝑡1

𝑓 (𝑡) 𝑑𝑡 = 𝐹 (𝑡2) − 𝐹 (𝑡1) = 𝐹 (𝑡 (𝑠2)) − 𝐹 (𝑡 (𝑠1)) =
∫ 𝑠2

𝑠1

𝐹 ′(𝑡 (𝑠))𝑡 ′(𝑠) 𝑑𝑠.

3.7. Switching the Order of Integration

Let 𝑓 (𝑡, 𝑠) be a continuous function of 𝑡 in [𝑡1, 𝑡2] and 𝑠 in [𝑠1, 𝑠2]. Then∫ 𝑡2

𝑡1

(∫ 𝑠2

𝑠1

𝑓 (𝑢, 𝑣) 𝑑𝑣
)
𝑑𝑢 =

∫ 𝑠2

𝑠1

(∫ 𝑡2

𝑡1

𝑓 (𝑢, 𝑣) 𝑑𝑢
)
𝑑𝑣.

Proof Define

𝐹 (𝑠) =
∫ 𝑡2

𝑡1

(∫ 𝑠

𝑠1

𝑓 (𝑢, 𝑣) 𝑑𝑣
)
𝑑𝑢.

Then
𝐹 (𝑠2) − 𝐹 (𝑠1) =

∫ 𝑡2

𝑡1

(∫ 𝑠2

𝑠1

𝑓 (𝑢, 𝑣) 𝑑𝑣
)
𝑑𝑢,

and

𝐹 (𝑠 + ℎ) − 𝐹 (𝑠) − ℎ

∫ 𝑡2

𝑡1

𝑓 (𝑢, 𝑠) 𝑑𝑢

=
∫ 𝑡2

𝑡1

(∫ 𝑠+ℎ

𝑠
[ 𝑓 (𝑢, 𝑣) − 𝑓 (𝑢, 𝑠)] 𝑑𝑣

)
𝑑𝑢.

Let 𝜖 (ℎ) be the maximum error

𝜖 (ℎ) = max | 𝑓 (𝑢, 𝑣) − 𝑓 (𝑢, 𝑠) |
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over 𝑢 in [𝑡1, 𝑡2], 𝑠 and 𝑣 in [𝑠1, 𝑠2], and |𝑣 − 𝑠 | ≤ ℎ. Then, by continuity, 𝜖 (ℎ) → 0
as ℎ → 0.

By the triangle inequality for integrals,����𝐹 (𝑠 + ℎ) − 𝐹 (𝑠) − ℎ

∫ 𝑡2

𝑡1

𝑓 (𝑢, 𝑠) 𝑑𝑢
���� ≤ ℎ(𝑇 − 𝑡0)𝜖 (ℎ).

Dividing by ℎ and passing to the limit as ℎ → 0, we conclude

𝐹 ′(𝑠) =
∫ 𝑡2

𝑡1

𝑓 (𝑢, 𝑠) 𝑑𝑢.

By the fundamental theorem of calculus,

𝐹 (𝑠2) − 𝐹 (𝑠1) =
∫ 𝑠2

𝑠1

𝐹 ′(𝑣) 𝑑𝑣 =
∫ 𝑠2

𝑠1

(∫ 𝑡2

𝑡1

𝑓 (𝑢, 𝑣) 𝑑𝑢
)
𝑑𝑣,

establishing the result. □

Exercises

Problem 3.1 Join 𝑛 equally spaced points on the unit circle consecutively by line
segments to obtain a regular polygon 𝑃. Use

1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑛−1 =
𝑧𝑛 − 1
𝑧 − 1

=
𝑛−1∏
𝑘=1

(𝑧 − 𝜔𝑘 ).

to show the product of the lengths of the lines joining the vertices of 𝑃 to a given
vertex equals 𝑛.



Chapter 4
Complex Derivatives

4.1 Contours

Let [𝑡1, 𝑡2] denote the closed interval 𝑡1 ≤ 𝑡 ≤ 𝑡2. A connected contour is a function

𝐶 : 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2, (4.1)

that is continuously differentiable on [𝑡1, 𝑡2]. Continuous differentiability means 𝑧(𝑡)
has a derivative

𝑧′(𝑡) = 𝑥 ′(𝑡) + 𝑖𝑦′(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2,

and 𝑧′(𝑡) is itself a continuous function on [𝑡1, 𝑡2]. So a connected contour is a
function of a real variable 𝑡 whose domain is an interval [𝑡1, 𝑡2] and is complex-
valued.

The length of a connected contour 𝐶 is

|𝐶 | =
∫ 𝑡2

𝑡1

|𝑧′(𝑡) | 𝑑𝑡 =
∫ 𝑡2

𝑡1

√
𝑥 ′(𝑡)2 + 𝑦′(𝑡)2 𝑑𝑡.

We say the connected contour (4.1) starts at 𝑧(𝑡1) and ends at 𝑧(𝑡2). Let 𝑎 and
𝑏 be complex numbers. The simplest connected contour 𝐶 starting at 𝑎 and ending
at 𝑏 is the line segment 𝑧(𝑡) = (1 − 𝑡)𝑎 + 𝑡𝑏, 0 ≤ 𝑡 ≤ 1. Then 𝑧′(𝑡) = 𝑏 − 𝑎 so the
length is

|𝐶 | =
∫ 1

0
|𝑧′(𝑡) | 𝑑𝑡 =

∫ 1

0
|𝑏 − 𝑎 | 𝑑𝑡 = |𝑏 − 𝑎 |.

This contour is denoted [𝑎, 𝑏].
Let 𝑎 be a real number. If 𝐶1 is a connected contour 𝑧1 (𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2, and 𝐶2 is

the connected contour given by 𝑧2 (𝑠) = 𝑧1 (𝑠 + 𝑎), 𝑡1 − 𝑎 ≤ 𝑠 ≤ 𝑡2 − 𝑎, we say 𝐶1
and 𝐶2 are equivalent. In this case, it is easy to see 𝐶1 and 𝐶2 have the same length.

Similarly, if 𝑎 is a positive real number, and 𝐶3 is given by 𝑧3 (𝑠) = 𝑧1 (𝑎𝑠),
𝑡1/𝑎 ≤ 𝑠 ≤ 𝑡2/𝑎, we say 𝐶1 and 𝐶3 are equivalent. In this case, 𝐶1 and 𝐶3 have the
same length.

65
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𝑎

𝑏

𝐺

𝑧

Fig. 4.1 The contour [𝑎, 𝑏]

It is important that 𝑎 be positive in this last example. When 𝑎 is negative, we do
not consider 𝐶1 and 𝐶3 to be equivalent, as 𝐶1 starts where 𝐶3 ends, and 𝐶3 starts
where𝐶1 ends. In this case, we write −𝐶 for the connected contour𝐶3. Nevertheless,
we still have | − 𝐶 | = |𝐶 |.

The connected contour given by

𝑧(𝜃) = 𝑐 + 𝑟𝑒𝑖 𝜃 = 𝑐 + 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃, 0 ≤ 𝜃 ≤ 2𝜋,

is the circle 𝐶 (𝑐, 𝑟) with center 𝑐 and radius 𝑟 traversed in the counter-clockwise
direction. Then −𝐶 (𝑐, 𝑟) is the circle traversed in the clockwise direction.

𝑟
𝑐

𝑧

Fig. 4.2 The contour 𝐶 (𝑐, 𝑟 )

For 𝐶 = 𝐶 (𝑐, 𝑟), 𝑧′(𝜃) = 𝑖𝑟𝑒𝑖 𝜃 , 0 ≤ 𝜃 ≤ 2𝜋, so
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|𝐶 | =
∫ 2𝜋

0
|𝑧′(𝜃) | 𝑑𝜃 =

∫ 2𝜋

0

��𝑖𝑟𝑒𝑖 𝜃 �� 𝑑𝜃 =
∫ 2𝜋

0
𝑟 𝑑𝜃 = 2𝜋𝑟.

In general, when 𝑡 in [𝑡1, 𝑡2] is a continuously differentiable function 𝑡 (𝑠) satisfy-
ing 𝑡 ′(𝑠) > 0 for 𝑠 in a closed interval [𝑠1, 𝑠2], and 𝐶4 is given by 𝑧4 (𝑠) = 𝑧1 (𝑡 (𝑠)),
𝑠1 ≤ 𝑠 ≤ 𝑠2, we say 𝐶1 and 𝐶4 are equivalent.

In this case, by the chain rule,

𝑧′4 (𝑠) = 𝑧′1 (𝑡 (𝑠))𝑡 ′(𝑠), hence |𝑧′4 (𝑡) | = |𝑧′1 (𝑡 (𝑠)) | 𝑡 ′(𝑠).

By integral substitution (Theorem 3.6),

|𝐶1 | =
∫ 𝑡2

𝑡1

|𝑧′1 (𝑡) | 𝑑𝑡 =
∫ 𝑠2

𝑠1

|𝑧′1 (𝑡 (𝑠)) |𝑡 ′(𝑠) 𝑑𝑠 =
∫ 𝑠2

𝑠1

|𝑧′4 (𝑠) | 𝑑𝑠 = |𝐶4 |.

Thus equivalent connected contours have the same length.
Summarizing informally, we think of a connected contour as a road, and it does

not matter how we drive along this road (as long as we do not go backward in time).
For example, the connected contour

𝑧(𝑡) = 1 − 𝑡2

1 + 𝑡2
+ 𝑖

2𝑡
1 + 𝑡2

, −1 ≤ 𝑡 ≤ 1, (4.2)

is equivalent to the connected contour 𝑧(𝜃) = 𝑒𝑖 𝜃 = cos 𝑡 + 𝑖 sin 𝑡, −𝜋/2 ≤ 𝜃 ≤ 𝜋/2,
because 𝑡 = tan(𝜃/2) transforms 𝑧(𝑡) into 𝑧(𝜃). In fact, both yield the right-half unit
circle, and both start at −𝑖 and end at 𝑖. However, following 𝑧(𝜃) we are driving at a
uniform speed, while, following 𝑧(𝑡), we are driving fastest at 𝑧 = 1 and slowest at
𝑧 = ±𝑖.

A contour 𝐶 is a finite collection 𝐶1, 𝐶2, . . . , 𝐶𝑛 of connected contours. In this
case, it is natural to define the length |𝐶 | to be

|𝐶 | = |𝐶1 | + |𝐶2 | + · · · + |𝐶𝑛 |.

Because of this, we write

𝐶 = 𝐶1 + 𝐶2 + · · · + 𝐶𝑛 (4.3)

and we call 𝐶 the sum of the connected contours 𝐶1, 𝐶2, . . . , 𝐶𝑛.
In particular, we write

𝑛 · 𝐶 = 𝑛𝐶 = 𝐶 + 𝐶 + · · · + 𝐶, (𝑛 times).

Then |𝑛𝐶 | = 𝑛|𝐶 |.
If 𝐶 = 𝐶 (𝑐, 𝑟), the contour 2𝐶

𝑧(𝜃) = 𝑐 + 𝑟𝑒𝑖 𝜃 , 0 ≤ 𝜃 ≤ 4𝜋,

also gives the same circle, but now winding twice. This contour can also be written
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𝑧(𝜃) = 𝑐 + 𝑟𝑒2𝑖 𝜃 , 0 ≤ 𝜃 ≤ 2𝜋.

The connected contours 𝐶 and 2𝐶 are not equivalent, as they have distinct lengths,

|2𝐶 | =
∫ 4𝜋

0
|𝑖𝑟𝑒𝑖 𝜃 | 𝑑𝜃 = 4𝜋𝑟 = 2|𝐶 |.

We now broaden the definition of connected contour. A contour 𝐶 is connected
if 𝐶 is given by a sum (4.3) of connected contours, as defined previously, with
the additional requirement that 𝐶2 starts where 𝐶1 ends, 𝐶3 starts where 𝐶2 ends,
and so on, up to and including 𝐶𝑛, which starts where 𝐶𝑛−1 ends. Here there is no
requirement that 𝐶1 start where 𝐶𝑛 ends.

𝑐 − 𝑟 𝑐 𝑐 + 𝑟

𝐶+
𝑟

Fig. 4.3 𝐶+
𝑟 = 𝐶+ (𝑐, 𝑟 ) + [𝑐 − 𝑟 , 𝑐 + 𝑟 ] is a connected contour

For example, let 𝐶+ (𝑐, 𝑟) be the upper half-circle 𝑧(𝜃) = 𝑐 + 𝑟𝑒𝑖 𝜃 , 0 ≤ 𝜃 ≤ 𝜋, and
let 𝐶+

𝑟 be
𝐶+
𝑟 = 𝐶+ (𝑐, 𝑟) + [𝑐 − 𝑟, 𝑐 + 𝑟] .

Then 𝐶+
𝑟 is connected contour (Figure 4.3).

In practice, all our contours will be circles, or arcs, or rectangles, or line segments,
or sums of these.

We now define closed contours. A connected contour is closed if the last point
equals the first point. For example 𝐶 (𝑎, 𝑟) and 𝐶+

𝑟 are closed while [𝑎, 𝑏] is not, at
least when 𝑎 ≠ 𝑏. A contour𝐶 is closed if it is the sum of closed connected contours.

If 𝑎 is a complex number, the closed contour 𝑧(𝑡) = 𝑎, 𝑡1 ≤ 𝑡 ≤ 𝑡2, is the constant
contour.

The closed contour
𝐶 = 𝐶 (0, 1) + 𝐶 (𝑖, 1)

is made up of two counter-clockwise circles. The first circle has center 0 and radius
1, and the second circle has center 𝑖 and radius 1.

The closed contour
𝐶 (0, 5) − 𝐶 (0, 1)
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𝐶

𝐺

Fig. 4.4 A closed contour 𝐶

𝑧

𝑧

0

𝑖

Fig. 4.5 The contour 𝐶 (0, 1) +𝐶 (𝑖, 1)

consists of two concentric circles, with the first circle taken counter-clockwise, and
the second circle clockwise.

4.2 Open Sets and Regions

Let 𝑎 be a complex number. The open disk with radius 𝑟 and center 𝑎 is the set

𝐷 (𝑎, 𝑟) = {𝑧 : |𝑧 − 𝑎 | < 𝑟}.

The circle with radius 𝑟 and center 𝑎 is the set

𝐶 (𝑎, 𝑟) = {𝑧 : |𝑧 − 𝑎 | = 𝑟}.
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0
1 5

𝑧

𝑧

Fig. 4.6 The contour 𝐶 (0, 5) −𝐶 (0, 1)

𝑧

𝑐

Fig. 4.7 A closed rectangle contour

Open Set

A set 𝐺 in C is open if every point 𝑎 in 𝐺 can be surrounded by an open
disk 𝐷 = 𝐷 (𝑎, 𝑟) centered at 𝑎 and completely contained in 𝐺.

Clearly, the complex plane C is an open set. Examples of open sets are in Figures
4.9 and 4.10.

The complement of a set 𝐶 in the complex plane is the set of points 𝑧 that are
not in 𝐶. Fo example, the complement of the contour 𝑥 ≤ 0 is 𝐺1, which is an open
set (Figure 4.10). More generally,
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𝐺

𝑎

𝐷

Fig. 4.8 An open set 𝐺

𝐺1

𝑟𝑒

𝑖𝑚

0

√
𝑧

𝑧2

𝐺2

𝑟𝑒

𝑖𝑚

0

Fig. 4.9 The open set 𝐺1 = 𝐺2
2 and its image 𝐺2 =

√
𝐺1

𝑟𝑒

𝑖𝑚

𝐺3

𝑖 𝜋

−𝑖 𝜋

𝑒𝑧

log 𝑧

𝐺1

𝑟𝑒

𝑖𝑚

0

Fig. 4.10 The open set 𝐺3 = log𝐺1 and its image 𝐺1 = 𝑒𝐺3
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4.1. The Complement of a Contour is Open

Let 𝐶 be a contour, and let 𝐺 be the set of points 𝑧 not in 𝐶. Then 𝐺 is open.

Proof If 𝑧 is not in 𝐶, then there is a minimum distance between 𝑧 and 𝐶. Let 𝐶 be
𝑧(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2, and let

𝑟 = min
𝑡1≤𝑡≤𝑡2

|𝑧 − 𝑧(𝑡) |.

By continuity of 𝑧(𝑡), the minimum 𝑟 is positive. Then the open disk 𝐷 (𝑧, 𝑟/2) does
not touch 𝐶, hence lies in 𝐺. □

Let 𝐺 be a set in C and let 𝑎 and 𝑏 be points in 𝐺. We say 𝑎 and 𝑏 are connected
within 𝐺 if there is a connected contour starting at 𝑎 and ending at 𝑏, and lying
entirely in 𝐺.

If every two points in 𝐺 are connected within 𝐺, then 𝐺 is a connected set. A
connected open set is a region.

An open disk 𝐷 is a region, since any point 𝑧 in 𝐷 can be connected within 𝐷 to
the center 𝑐 by the contour [𝑐, 𝑧].

Sets 𝐺 and 𝐺 ′ are disjoint if they have no point in common.
If we write 𝑎 ∼𝐺 𝑏 when 𝑎 and 𝑏 are connected within 𝐺, then we have the

following properties. The constant contour 𝑧(𝑡) ≡ 𝑎 starts at 𝑎 and ends at 𝑎. If 𝐶
starts at 𝑎 and ends at 𝑏, then −𝐶 starts at 𝑏 and ends at 𝑎. If 𝐶 starts at 𝑎 and ends at
𝑏, and𝐶 ′ starts at 𝑏 and ends at 𝑐, then𝐶 +𝐶 ′ starts at 𝑎 and ends at 𝑐. Summarizing,
∼𝐺 is an equivalence relation,

1. 𝑎 ∼𝐺 𝑎,
2. 𝑎 ∼𝐺 𝑏 implies 𝑏 ∼𝐺 𝑎, and
3. 𝑎 ∼𝐺 𝑏 and 𝑏 ∼𝐺 𝑐 imply 𝑎 ∼𝐺 𝑐.

It follows that 𝐺 is a disjoint union

𝐺 = 𝐺1 ∪ 𝐺2 ∪ 𝐺3 ∪ . . .

of connected sets 𝐺1, 𝐺2, . . . , the connected components of 𝐺.
Suppose 𝐺 is open, and let 𝑎 and 𝑏 be in 𝐺. Then there is a disk 𝐷 centered at

𝑏 and contained in 𝐺. If 𝑎 ∼𝐺 𝑏, then 𝑎 ∼𝐺 𝑧 for any 𝑧 in 𝐷. Hence the connected
components 𝐺1, 𝐺2, . . . , are themselves open.

By the following theorem, the decomposition of an open set into a disjoint union
of regions is unique, except possibly for the ordering of the regions.

4.2. Theorem

If 𝐺1 and 𝐺2 are disjoint open sets, then the open set 𝐺 = 𝐺1 ∪ 𝐺2 is not
connected.
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Proof Argue by contradiction: Suppose 𝑎1 and 𝑎2 are points in 𝐺1 and 𝐺2 respec-
tively, and there is a connected contour 𝑧(𝑡), defined on an interval 𝐼 = [𝑡1, 𝑡2],
starting at 𝑎1 and ending at 𝑎2. Let 𝐼1 be the set of times 𝑡 such that the initial
segment 𝑧( [𝑡1, 𝑡]) lies in 𝐺1, and let 𝐼2 be the set of times 𝑡 such that the terminal
segment 𝑧( [𝑡, 𝑡2]) lies in 𝐺2. Then 𝑡1 is in 𝐼1 and 𝑡2 is in 𝐼2.

If 𝑠 is a fixed time in (𝑡1, 𝑡2), by continuity of 𝑧(𝑡), 𝑧(𝑡) is near 𝑧(𝑠) when 𝑡 is near
𝑠. Since 𝐺1 is open, some interval (𝑠 − 𝛿, 𝑠 + 𝛿) is in 𝐼1 if 𝑠 is in 𝐼1. By the same
token, since 𝐺2 is open, some interval (𝑠 − 𝛿, 𝑠 + 𝛿) is in 𝐼2 if 𝑠 is in 𝐼2. Thus 𝐼1 is
an interval of the form [𝑡1, 𝑠1), and 𝐼2 is an interval of the form (𝑠2, 𝑡2].

But, since 𝐼1 and 𝐼2 are disjoint and their union is 𝐼, this is impossible. □

4.3 Differentiable Functions

Throughout, we consider complex functions 𝑓 (𝑧) defined only on open sets, or
functions whose domains are open sets.

Let 𝑓 (𝑧) be a function defined on an open set 𝐺, and let 𝑧 be a point in 𝐺. We
say 𝑓 (𝑧) is differentiable at 𝑧 if the limit

𝑓 ′(𝑧) = lim
ℎ→0

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

(4.4)

exists. Here ℎ is a complex number, so ℎ → 0 means |ℎ| → 0. When the limit 𝑓 ′(𝑧)
exists (and is unique), we call 𝑓 ′(𝑧) the (complex) derivative at 𝑧.

For 𝑓 ′(𝑧) to exist, by definition of limit, 𝑓 (𝑧 + ℎ) must be defined for 𝑧 + ℎ near
𝑧. This explains we restrict the domains of our functions 𝑓 (𝑧) to open sets.

The simplest example of a differentiable function is 𝑓 (𝑧) = constant. This 𝑓 (𝑧) is
differentiable at every point 𝑧 with 𝑓 ′(𝑧) = 0. The next simplest example is 𝑓 (𝑧) = 𝑧.
This 𝑓 (𝑧) is differentiable and 𝑓 ′(𝑧) = 1.

4.3. Complex Derivative Rules

Let 𝑓 (𝑧) and 𝑔 be differentiable. Then so are 𝑓 ± 𝑔, 𝑓 𝑔, and 𝑓 /𝑔, at least
where 𝑔 ≠ 0, and we have

( 𝑓 + 𝑔) ′ = 𝑓 ′ + 𝑔′, ( 𝑓 𝑔) ′ = 𝑓 ′𝑔 + 𝑓 𝑔′,

(
𝑓

𝑔

) ′
=

𝑓 ′𝑔 − 𝑓 𝑔′

𝑔2 .

Moreover if ℎ is differentiable at 𝑔(𝑧), then the composition ℎ(𝑔(𝑧)) is
differentiable with

𝑑

𝑑𝑧
ℎ(𝑔(𝑧)) = ℎ′(𝑔(𝑧))𝑔′(𝑧).
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The proof of this result is exactly like the proof of the corresponding result in real
calculus. In the following, we use it without comment.

Using Theorem 4.3, we see every polynomial function and every rational function
is differentiable at all points except where we are dividing by zero. For example,

𝑓 (𝑧) = 𝑧2 + 1
𝑧3 − 2𝑧 + 1

is differentiable on the open set 𝐺 = C − {𝑎, 𝑏, 𝑐}, where 𝑎, 𝑏, 𝑐 are the roots of
𝑧3 − 2𝑧 + 1 = 0.

Also
𝑓 (𝑧) = 𝑒1/𝑧

is differentiable on 𝐺 = C − 0.
Let 𝐶 be a connected contour 𝑧(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2, and suppose 𝑓 (𝑧) is differentiable

at each point 𝑧(𝑡) of 𝐶. Let ℎ be a real number. If ℎ → 0, then 𝑧(𝑡 + ℎ)) → 𝑧(𝑡). By
differentiability,

𝑓 ′(𝑧(𝑡)) = lim
ℎ→0

𝑓 (𝑧(𝑡 + ℎ)) − 𝑓 (𝑧(𝑡))
𝑧(𝑡 + ℎ) − 𝑧(𝑡) ,

so

𝑑

𝑑𝑡
𝑓 (𝑧(𝑡)) = lim

ℎ→0

𝑓 (𝑧(𝑡 + ℎ)) − 𝑓 (𝑧(𝑡))
ℎ

= lim
ℎ→0

𝑓 (𝑧(𝑡 + ℎ)) − 𝑓 (𝑧(𝑡))
𝑧(𝑡 + ℎ) − 𝑧(𝑡) · 𝑧(𝑡 + ℎ) − 𝑧(𝑡)

ℎ

= lim
ℎ→0

𝑓 (𝑧(𝑡 + ℎ)) − 𝑓 (𝑧(𝑡))
𝑧(𝑡 + ℎ) − 𝑧(𝑡) · lim

ℎ→0

𝑧(𝑡 + ℎ) − 𝑧(𝑡)
ℎ

= 𝑓 ′(𝑧(𝑡))𝑧′(𝑡).

This is the

4.4. Contour Chain Rule

Let 𝐶 be a connected contour 𝑧(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2. If 𝑓 (𝑧) is differentiable at
each point of 𝐶, then

𝑑

𝑑𝑡
𝑓 (𝑧(𝑡)) = 𝑓 ′(𝑧(𝑡))𝑧′(𝑡) (4.5)

for 𝑡1 ≤ 𝑡 ≤ 𝑡2.

Let 𝑓 (𝑧) be a complex function. Recall (§3.2) 𝑓 (𝑧) = 𝑓 (𝑥+𝑖𝑦) may be viewed as a
function 𝑓 (𝑥, 𝑦) of two real variables (𝑥, 𝑦). When ℎ is real, 𝑓 (𝑧+ℎ) = 𝑓 ((𝑥+ℎ)+𝑖𝑦)
corresponds to 𝑓 (𝑥+ℎ, 𝑦), and 𝑓 (𝑧+𝑖ℎ) = 𝑓 (𝑥+𝑖(𝑦+ℎ)) corresponds to 𝑓 (𝑥, 𝑦+ℎ).
Hence
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lim
ℎ→0
ℎ real

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

= lim
ℎ→0
ℎ real

𝑓 (𝑥 + ℎ, 𝑦) − 𝑓 (𝑥, 𝑦)
ℎ

=
𝜕 𝑓

𝜕𝑥
(𝑧), (4.6)

and

lim
ℎ→0
ℎ imag

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

= lim
ℎ→0
ℎ real

𝑓 (𝑧 + 𝑖ℎ) − 𝑓 (𝑧)
𝑖ℎ

=
1
𝑖

lim
ℎ→0
ℎ real

𝑓 (𝑥, 𝑦 + ℎ) − 𝑓 (𝑥, 𝑦)
ℎ

=
1
𝑖

𝜕 𝑓

𝜕𝑦
(𝑧).

(4.7)

We will use the following result often to establish existence of 𝑓 ′(𝑧).

4.5. Theorem

Let 𝑓 (𝑧) and 𝑔(𝑧) be continuous functions on an open set 𝐺. Then

1. 𝑓 ′(𝑧) exists at 𝑧 and equals 𝑔(𝑧) for all 𝑧 in 𝐺 iff for all ℎ complex and
𝑧 such that the contour [𝑧, 𝑧 + ℎ] lies in 𝐺,

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧) = ℎ ·
∫ 1

0
𝑔(𝑧 + 𝑡ℎ) 𝑑𝑡, (4.8)

2. 𝜕 𝑓 /𝜕𝑥 exists at 𝑧 and equals 𝑔(𝑧) for all 𝑧 in 𝐺 iff for all ℎ real and 𝑧
such that the contour [𝑧, 𝑧 + ℎ] lies in 𝐺, (4.8) holds, and

3. (1/𝑖)𝜕 𝑓 /𝜕𝑦 exists at 𝑧 and equals 𝑔(𝑧) for all 𝑧 in𝐺 iff for all ℎ imaginary
and 𝑧 such that the contour [𝑧, 𝑧 + ℎ] lies in 𝐺, (4.8) holds.

Proof Suppose (4.8) holds. Then

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

− 𝑔(𝑧) =
∫ 1

0
(𝑔(𝑧 + 𝑡ℎ) − 𝑔(𝑧)) 𝑑𝑡.

Let 𝜖 (ℎ) be the variation in 𝑔(𝑧) over the contour [𝑧, 𝑧 + ℎ],

𝜖 (ℎ) = max
0≤𝑡≤1

|𝑔(𝑧 + 𝑡ℎ) − 𝑔(𝑧) | .

Since 𝑔(𝑧) is continuous, 𝜖 (ℎ) → 0 as ℎ → 0. By the triangle inequality for integrals,���� 𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

− 𝑔(𝑧)
���� ≤ ∫ 1

0
|𝑔(𝑧 + 𝑡ℎ) − 𝑔(𝑧) | 𝑑𝑡 ≤ 𝜖 (ℎ).
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Passing to the limit ℎ → 0, by (4.4), 𝑓 ′(𝑧) exists and equals 𝑔(𝑧). If (4.8) holds only
when ℎ is real, passing to the limit ℎ → 0, by (4.6), 𝜕 𝑓 /𝜕𝑥 exists at 𝑧 and equals
𝑔(𝑧). If (4.8) holds only when ℎ is imaginary, by (4.7), passing to the limit ℎ → 0,
(1/𝑖)𝜕 𝑓 /𝜕𝑦 exists at 𝑧 and equals 𝑔(𝑧).

For the converse, if 𝑓 ′(𝑧) = 𝑔(𝑧), by the contour chain rule applied to 𝑧(𝑡) = 𝑧+𝑡ℎ,
and the fundamental theorem of calculus,

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧) =
∫ 1

0
𝑓 ′(𝑧(𝑡))𝑧′(𝑡) 𝑑𝑡 = ℎ ·

∫ 1

0
𝑔(𝑧(𝑡)) 𝑑𝑡.

The other two cases are similar. □

As a consequence,

4.6. Theorem

If 𝑓 (𝑧) is differentiable on an open set 𝐺 and 𝑓 ′(𝑧) = 0 everywhere on 𝐺,
then 𝑓 (𝑧) is a constant on each connected component of 𝐺.

Proof If [𝑎, 𝑏] is in 𝐺, by (4.8) with 𝑔(𝑧) = 𝑓 ′(𝑧) = 0, we have 𝑓 (𝑎) = 𝑓 (𝑏). Fix a
point 𝑎 in 𝐺, and let 𝐺1 be the set of points 𝑏 in 𝐺 connected to 𝑎 by a multi-segment
contour (Figure 4.11)

[𝑎0, 𝑎1] + [𝑎1, 𝑎2] + · · · + [𝑎𝑛−1, 𝑎𝑛], 𝑎0 = 𝑎, 𝑎𝑛 = 𝑏.

Then 𝑓 (𝑎) = 𝑓 (𝑏), thus 𝑓 (𝑧) is constant on 𝐺1. If 𝑏 is in 𝐺1 and 𝑧 is near 𝑏, then 𝑧
is in 𝐺1. If 𝑏 is not in 𝐺1 and 𝑧 is near 𝑏, then 𝑧 is not in 𝐺1. Thus 𝐺1 and 𝐺 − 𝐺1
are open sets, hence 𝐺1 is the connected component of 𝐺 containing 𝑎. □

𝐺

𝑎

𝑎1
𝑎2

𝑏

Fig. 4.11 A multi-segment contour
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4.4 Complex Taylor Series

A power series centered at a point 𝑐 is a complex series of the form

∞∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑐)𝑛 = 𝑎0 + 𝑎1 (𝑧 − 𝑐) + 𝑎2 (𝑧 − 𝑐)2 + . . . (4.9)

When 𝑐 = 0, the series

∞∑
𝑛=0

𝑎𝑛𝑧
𝑛 = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧

2 + . . . ,

is similar to the Taylor series in §2.5.
Recall (3.5) the geometric series

1
1 − 𝑧

=
∞∑
𝑛=0

𝑧𝑛 = 1 + 𝑧 + 𝑧2 + . . . (4.10)

converges in the open unit disk |𝑧 | < 1. Replacing 𝑧 by 𝑧 − 𝑐,

1
1 − (𝑧 − 𝑐) =

∞∑
𝑛=0

(𝑧 − 𝑐)𝑛 = 1 + (𝑧 − 𝑐) + (𝑧 − 𝑐)2 + . . .

converges in the open disk 𝐷 (𝑐, 1).

𝑐

𝑎

𝑧

Fig. 4.12 If the power series converges at 𝑎, it converges in the disk enclosed by 𝑎
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4.7. Power Series Converge in a Disk

Let 𝑐 be a complex number. Then the power series (4.9) (1) converges only at
𝑐, or (2) converges everywhere, or (3) , for some 𝑅 > 0, converges absolutely
if |𝑧 − 𝑐 | < 𝑅 and diverges if |𝑧 − 𝑐 | > 𝑅.

The disk 𝐷 (𝑐, 𝑅) is the disk of convergence. For example, for the geometric
series, 𝑅 = 1, and the disk of convergence is 𝐷 (0, 1).
Proof Suppose the series converges at some 𝑎 ≠ 𝑐. By the 𝑛-th term test, the
sequence of terms is bounded, hence there is a constant 𝑀 with

|𝑎𝑛 | |𝑎 − 𝑐 |𝑛 ≤ 𝑀, 𝑛 ≥ 0.

Suppose 𝑟 = |𝑧 − 𝑐 |/|𝑎 − 𝑐 | < 1 (Figure 4.12). Then

∞∑
𝑛=0

|𝑎𝑛 | |𝑧 − 𝑐 |𝑛 =
∞∑
𝑛=0

|𝑎𝑛 | |𝑎 − 𝑐 |𝑛
(
|𝑧 − 𝑐 |
|𝑎 − 𝑐 |

)𝑛
≤ 𝑀

∞∑
𝑛=0

𝑟𝑛 =
𝑀

1 − 𝑟
.

Thus (4.9) converges absolutely at all points in the open disk centered at 𝑐 with
radius |𝑎 − 𝑐 |.

Now let 𝑅 be the least upper bound of the distances |𝑎 − 𝑐 | to 𝑐 of the points 𝑎
at which the power series converges. Then there are three possibilities. If 𝑅 = 0, the
series converges only at 𝑐. If 𝑅 = ∞, the series converges everywhere. If 0 < 𝑅 < ∞,
then the series converges absolutely when |𝑧−𝑐 | < 𝑅 and diverges when |𝑧−𝑐 | > 𝑅.□

4.8. Power Series are Differentiable

Suppose the power series (4.9) converges for 𝑧 in a disk 𝐷 centered at 𝑐, and
call the sum 𝑓 (𝑧). Then all derivatives 𝑓 (𝑛) (𝑧), 𝑛 ≥ 0, exist in 𝐷, and are
given by differentiating the series (4.9) term-by-term, with

𝑓 (𝑛) (𝑐) = 𝑛!𝑎𝑛, 𝑛 ≥ 0.

As a consequence of this theorem, a power series 𝑓 (𝑧) may be written as a
complex Taylor series

𝑓 (𝑧) =
∞∑
𝑛=0

𝑓 (𝑛) (𝑐) (𝑧 − 𝑐)𝑛
𝑛!

= 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐) + 𝑓 ′′(𝑐) (𝑧 − 𝑐)2

2!
+ . . . ,

at any point 𝑧 in the disk of convergence 𝐷.
The geometric series (4.10) may be differentiated term-by-term, yielding
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1
(1 − 𝑧)2 =

∞∑
𝑛=1

𝑛𝑧𝑛−1 = 1 + 2𝑧 + 3𝑧2 + . . . , |𝑧 | < 1. (4.11)

In fact, this particular result was already derived as (3.10). We can now prove
Theorem 4.8.

Proof We first show the differentiated power series

∞∑
𝑛=1

𝑛𝑎𝑛 (𝑧 − 𝑐)𝑛−1 (4.12)

converges for 𝑧 in 𝐷.
Let 𝑧 be in 𝐷. Then (Figure 4.12) there is an 𝑎 in 𝐷 and an 0 < 𝑟 < 1 satisfying

|𝑧 − 𝑐 | ≤ 𝑟 |𝑎 − 𝑐 |. Since the series (4.9) converges at 𝑎, by the 𝑛-th term test, the
sequence of terms is bounded. Hence there is a constant 𝑀 with

|𝑎𝑛 | |𝑎 − 𝑐 |𝑛 ≤ 𝑀, 𝑛 ≥ 0. (4.13)

Then by (4.11),

∞∑
𝑛=1

𝑛|𝑎𝑛 | |𝑧 − 𝑐 |𝑛−1 =
1

|𝑎 − 𝑐 |

∞∑
𝑛=1

𝑛|𝑎𝑛 | |𝑎 − 𝑐 |𝑛 ·
(
|𝑧 − 𝑐 |
|𝑎 − 𝑐 |

)𝑛−1

≤ 𝑀

|𝑎 − 𝑐 |

∞∑
𝑛=1

𝑛𝑟𝑛−1 =
𝑀

|𝑎 − 𝑐 | ·
1

(1 − 𝑟)2 .

Thus (4.12) converges absolutely at 𝑧.
By the binomial theorem,

(𝑧 + ℎ − 𝑐)𝑛 =
𝑛∑
𝑗=0

(
𝑛

𝑗

)
(𝑧 − 𝑐)𝑛− 𝑗ℎ 𝑗

= (𝑧 − 𝑐)𝑛 + 𝑛(𝑧 − 𝑐)𝑛−1ℎ +
𝑛∑
𝑗=2

(
𝑛

𝑗

)
(𝑧 − 𝑐)𝑛− 𝑗ℎ 𝑗 ,

thus for ℎ ≠ 0,

(𝑧 + ℎ − 𝑐)𝑛 − (𝑧 − 𝑐)𝑛
ℎ

− 𝑛(𝑧 − 𝑐)𝑛−1 =
𝑛∑
𝑗=2

(
𝑛

𝑗

)
(𝑧 − 𝑐)𝑛− 𝑗ℎ 𝑗−1.

Now choose any 𝛿 > 0. Then for ℎ satisfying 0 < |ℎ| < 𝛿,



80 4 Complex Derivatives���� (𝑧 + ℎ − 𝑐)𝑛 − (𝑧 − 𝑐)𝑛
ℎ

− 𝑛(𝑧 − 𝑐)𝑛−1
���� =

������ 𝑛∑
𝑗=2

(
𝑛

𝑗

)
(𝑧 − 𝑐)𝑛− 𝑗ℎ 𝑗−1

������
≤ |ℎ|

𝑛∑
𝑗=2

(
𝑛

𝑗

)
|𝑧 − 𝑐 |𝑛− 𝑗 |ℎ| 𝑗−2

≤ |ℎ|
𝑛∑
𝑗=2

(
𝑛

𝑗

)
|𝑧 − 𝑐 |𝑛− 𝑗𝛿 𝑗−2

=
|ℎ|
𝛿2

𝑛∑
𝑗=2

(
𝑛

𝑗

)
|𝑧 − 𝑐 |𝑛− 𝑗𝛿 𝑗

≤ |ℎ|
𝛿2 (|𝑧 − 𝑐 | + 𝛿)𝑛,

where we have used the binomial theorem again. To summarize,���� (𝑧 + ℎ − 𝑐)𝑛 − (𝑧 − 𝑐)𝑛
ℎ

− 𝑛(𝑧 − 𝑐)𝑛−1
���� ≤ |ℎ|

𝛿2 (|𝑧 − 𝑐 | + 𝛿)𝑛 (4.14)

for 0 < |ℎ| < 𝛿.
Now we show that 𝑓 ′(𝑧) exists and equals (4.12). Choose 𝛿 such that |𝑧− 𝑐 | + 𝛿 <

|𝑎 − 𝑐 |. Since (4.9) converges absolutely at 𝑎, the series 𝑔(𝑤) = ∑ |𝑎𝑛 |𝑤𝑛 converges
for |𝑤 | < |𝑎 − 𝑐 |. By the triangle inequality and (4.14), for 0 < |ℎ| < 𝛿,����� 𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)

ℎ
−

∞∑
𝑛=1

𝑛𝑎𝑛 (𝑧 − 𝑐)𝑛−1

�����
≤

∞∑
𝑛=1

|𝑎𝑛 |
���� (𝑧 + ℎ − 𝑐)𝑛 − (𝑧 − 𝑐)𝑛

ℎ
− 𝑛(𝑧 − 𝑐)𝑛−1

����
≤

∞∑
𝑛=1

|𝑎𝑛 |
|ℎ|
𝛿2 (|𝑧 − 𝑐 | + 𝛿)𝑛

=
|ℎ|
𝛿2 𝑔(|𝑧 − 𝑐 | + 𝛿).

Letting ℎ → 0 in the last inequality establishes 𝑓 ′(𝑧) exists and equals (4.12). In
particular, 𝑓 ′(𝑐) = 𝑎1.

Repeating the argument with (4.12) playing the role of (4.9) establishes

𝑓 ′′(𝑧) =
( ∞∑
𝑛=1

𝑛𝑎𝑛 (𝑧 − 𝑐)𝑛−1

) ′
=

∞∑
𝑛=2

𝑛(𝑛 − 1)𝑎𝑛 (𝑧 − 𝑐)𝑛−2,

hence 𝑓 ′′(𝑐) = 2!𝑎2. Continuing in this manner, we obtain the result for all deriva-
tives of 𝑓 (𝑧). □
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As a consequence, the complex functions 𝑒𝑧 , sin 𝑧, cos 𝑧 given by (3.12), (3.13),
(3.14) are differentiable everywhere on the complex plane. Differentiating their series
definitions term-by-term,

(𝑒𝑧) ′ = 𝑒𝑧 , (sin 𝑧) ′ = cos 𝑧, (cos 𝑧) ′ = − sin 𝑧.

An alternate proof of Theorem 4.8 is to use Theorem 4.5. But this requires the
differentiated series (4.12) to be continuous, which in turn requires discussions of
uniform convergence. The above proof avoids these issues. Of course, as a conse-
quence of Theorem 4.8, (4.12) is in fact continuous.

4.5 Cauchy-Riemann Equation

Let 𝑓 (𝑧) be a complex function. Recall (§3.2) 𝑓 (𝑧) = 𝑓 (𝑥 + 𝑖𝑦) may be viewed as a
function 𝑓 (𝑥, 𝑦) of two real variables (𝑥, 𝑦). With this viewpoint, we may compute
𝜕 𝑓 /𝜕𝑥 and 𝜕 𝑓 /𝜕𝑦.

Cauchy-Riemann (CR) equation

Let 𝑓 (𝑧) = 𝑓 (𝑥 + 𝑦𝑖) be a complex function. The Cauchy-Riemann equation
is

𝜕 𝑓

𝜕𝑥
=

1
𝑖

𝜕 𝑓

𝜕𝑦
.

The CR equation is valid for some functions 𝑓 (𝑧), and not valid for other functions
𝑓 (𝑧). For example, if

𝑓 (𝑧) = 𝑧2 = (𝑥 + 𝑖𝑦)2 = (𝑥2 − 𝑦2) + 2𝑥𝑦𝑖,

then
𝜕 𝑓

𝜕𝑥
= 2𝑥 + 2𝑦𝑖 =

1
𝑖
(2𝑥𝑖 − 2𝑦) = 1

𝑖

𝜕 𝑓

𝜕𝑦
,

so the CR equation is valid for this 𝑓 (𝑧) at every point 𝑧.
On the other hand, if

𝑓 (𝑧) = 𝑧2 = (𝑥 − 𝑖𝑦)2 = (𝑥2 − 𝑦2) − 2𝑥𝑦𝑖,

then
𝜕 𝑓

𝜕𝑥
= 2𝑥 − 2𝑦𝑖 = −1

𝑖
(−2𝑥𝑖 − 2𝑦) = −1

𝑖

𝜕 𝑓

𝜕𝑦
,

so the CR equation is not valid for this 𝑓 (𝑧), for any point 𝑧 ≠ 0.
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Let 𝑧 be a point in 𝐺 and suppose the derivative 𝑓 ′(𝑧) exists at 𝑧. In the definition
(4.4), the limit 𝑓 ′(𝑧) is taken as ℎ approaches 0 from any direction. In particular,
if ℎ approaches 0 along the horizontal direction, then ℎ is real, and if ℎ approaches
along the vertical direction, then ℎ is imaginary. From (4.6) and (4.7), we conclude

4.9. Theorem

If 𝑓 ′(𝑧) exists at every point in an open set 𝐺, then 𝑓 (𝑧) satisfies the CR
equation and 𝑓 ′(𝑧) = 𝜕 𝑓 /𝜕𝑥 at every point in 𝐺.

Now suppose 𝑓 (𝑧) is defined and the partial derivatives 𝜕 𝑓 /𝜕𝑥, 𝜕 𝑓 /𝜕𝑦 are
continuous on an open set 𝐺. Let 𝐶 be a connected contour 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) in 𝐺.
Then 𝑧(𝑡) = 𝑥(𝑡) +𝑖𝑦(𝑡) corresponds to the pair of functions (𝑥(𝑡), 𝑦(𝑡)), and 𝑓 (𝑧(𝑡))
corresponds to 𝑓 (𝑥(𝑡), 𝑦(𝑡)). By the chain rule1 for functions of two real variables,

𝑑

𝑑𝑡
𝑓 (𝑧(𝑡)) = 𝑑

𝑑𝑡
𝑓 (𝑥(𝑡), 𝑦(𝑡))

=
𝜕 𝑓

𝜕𝑥
(𝑥(𝑡), 𝑦(𝑡))𝑥 ′(𝑡) + 𝜕 𝑓

𝜕𝑦
(𝑥(𝑡), 𝑦(𝑡))𝑦′(𝑡)

=
𝜕 𝑓

𝜕𝑥
(𝑧(𝑡))𝑥 ′(𝑡) + 𝜕 𝑓

𝜕𝑦
(𝑧(𝑡))𝑦′(𝑡).

If moreover 𝑓 (𝑧) satisfies the CR equation on 𝐺, this reduces to

𝑑

𝑑𝑡
𝑓 (𝑧(𝑡)) = 𝜕 𝑓

𝜕𝑥
(𝑧(𝑡)) (𝑥 ′(𝑡) + 𝑖𝑦′(𝑡)) = 𝜕 𝑓

𝜕𝑥
(𝑧(𝑡))𝑧′(𝑡). (4.15)

In this case, we may obtain the converse of Theorem 4.9.

4.10. Theorem

If 𝑓 (𝑧) satisfies the CR equation at every point in an open set 𝐺, and 𝜕 𝑓 /𝜕𝑥
is continuous at every point in 𝐺, then 𝑓 ′(𝑧) exists and equals 𝜕 𝑓 /𝜕𝑥 at
every point in 𝐺.

Proof Let 𝑧 be a point in 𝐺 and suppose the contour [𝑧, 𝑧 + ℎ] lies in 𝐺. Since
𝑧′(𝑡) = ℎ on this contour, by the fundamental theorem of calculus (Theorem 3.5)
and (4.15),

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧) = ℎ ·
∫ 1

0

𝜕 𝑓

𝜕𝑥
(𝑧 + 𝑡ℎ) 𝑑𝑡.

By Theorem 4.5, 𝑓 ′(𝑧) exists and equals 𝜕 𝑓 /𝜕𝑥 at 𝑧. □

1 Continuity of 𝜕 𝑓 /𝜕𝑥, 𝜕 𝑓 /𝜕𝑦 is needed for this chain rule.
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For example, let

𝑓 (𝑧) = 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥 (cos 𝑦 + 𝑖 sin 𝑦).

Then
𝜕 𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
𝑒𝑥 (cos 𝑦 + 𝑖 sin 𝑦) = 𝑒𝑧 ,

and
1
𝑖

𝜕 𝑓

𝜕𝑦
=

1
𝑖

𝜕

𝜕𝑦
𝑒𝑥 (cos 𝑦 + 𝑖 sin 𝑦) = 1

𝑖
𝑒𝑥 (− sin 𝑦 + 𝑖 cos 𝑦) = 𝑒𝑧 .

Hence the CR equation is valid for 𝑒𝑧 everywhere, so 𝑒𝑧 is differentiable at every
point in C, with

(𝑒𝑧) ′ = 𝑒𝑧 .

Of course we already know this, but this time we are illustrating the CR equation.
The function 𝑓 (𝑧) = 𝑓 (𝑥 + 𝑖𝑦) = 𝑦2 satisfies

𝜕 𝑓

𝜕𝑥
= 0,

𝜕 𝑓

𝜕𝑦
= 2𝑦

everywhere. Therefore this function is differentiable at all points on the real line, and
nowhere else.

When 𝑓 (𝑧) is differentiable at every point in an open disk about a point 𝑎, we say
𝑓 (𝑧) is holomorphic at 𝑎. So a function is differentiable at every point of an open
set 𝐺 iff it is holomorphic at every point of 𝐺.

Polynomials (in 𝑧) and 𝑒𝑧 , sin 𝑧, cos 𝑧 are holomorphic on 𝐺 = C, and rational
functions are holomorphic everywhere except at the roots of the denominator.

The function 𝑓 (𝑧) = 𝑦2 is differentiable on the real line but nowhere holomorphic,
as the real line is not an open set.

A function that is holomorphic at every point in C is entire. So every polynomial
(in 𝑧) is entire and 𝑒𝑧 , sin 𝑧, cos 𝑧 are entire.

4.6 The Principal Logarithm

From real calculus, the logarithm is defined to be the inverse of the exponential. We
want to do the same for 𝑒𝑧 . We want to define a holomorphic inverse 𝑓 (𝑧) to 𝑒𝑧 ,

𝑒 𝑓 (𝑧) = 𝑧 and 𝑓 (𝑒𝑧) = 𝑧.

Because 𝑒𝑧 = 𝑒𝑧+2𝜋𝑖 , the second equation implies

𝑧 = 𝑓 (𝑒𝑧) = 𝑓 (𝑒𝑧+2𝜋𝑖) ) = 𝑧 + 2𝜋𝑖,

which is impossible. Hence no such function 𝑓 (𝑧) can satisfy the second equation.
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As for the first equation, inserting 𝑧 = 0 yields 𝑒 𝑓 (0) = 0, which can’t happen
since 𝑒𝑧 is never zero. So we will not be able to define the logarithm of 0.

Even if we stay away from 0, we still have problems. Below, using integration, we
see that we will not be able to define a holomorphic logarithm on all of 𝐺 = C − 0.
But we will be able to define a holomorphic logarithm on all of 𝐺1 as in Figure 4.10.

Let 𝐺 be an open set. A branch of log 𝑧 on 𝐺 is a holomorphic function 𝑓 (𝑧)
satisfying

𝑒 𝑓 (𝑧) = 𝑧, 𝑧 in 𝐺.

When there is a branch of log 𝑧 on 𝐺, we say log 𝑧 is holomorphic on 𝐺.
Notice if there is a branch 𝑓 (𝑧) of log 𝑧 on 𝐺, then we can’t have 0 in 𝐺, since 𝑒𝑧

is never 0.
If 𝑓 (𝑧) is a branch of log 𝑧 on 𝐺, then by the chain rule

1 = 𝑧′ =
(
𝑒 𝑓 (𝑧)

) ′
= 𝑒 𝑓 (𝑧) 𝑓 ′(𝑧) = 𝑧 𝑓 ′(𝑧),

so 𝑓 ′(𝑧) = 1/𝑧.
Conversely, suppose we have a holomorphic function 𝑓 (𝑧) on 𝐺 whose derivative

is 1/𝑧 on 𝐺. Then by the quotient rule,(
𝑒 𝑓 (𝑧)

𝑧

) ′
=

𝑒 𝑓 (𝑧) 𝑓 ′(𝑧)𝑧 − 𝑒 𝑓 (𝑧)

𝑧2 = 0,

so 𝑒 𝑓 (𝑧)/𝑧 is a constant 𝑐 on 𝐺, or

𝑒 𝑓 (𝑧) = 𝑐𝑧, 𝑧 in 𝐺.

If we choose any complex number 𝑑 satisfying 𝑒𝑑 = 𝑐, then we see 𝑓 (𝑧) − 𝑑 is a
branch of log 𝑧 on 𝐺. Thus

4.11. Derivative of log 𝑧

Let 𝐺 be an open set in C − 0 and let 𝑓 (𝑧) be a holomorphic function on 𝐺.
Then 𝑓 (𝑧) plus a constant is a branch of log 𝑧 on 𝐺 if and only if

𝑓 ′(𝑧) = 1
𝑧
, 𝑧 in 𝐺.

Every nonzero complex number 𝑧 = 𝑥 + 𝑖𝑦 can be written as 𝑟𝑒𝑖 𝜃 for some 𝑟 and
𝜃, so it makes sense to define

log 𝑧 = log 𝑟 + 𝑖𝜃.
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This is not well-defined because 𝜃 is only determined up to multiples of 2𝜋. However,
if we restrict 𝑧 to be in the open set 𝐺1 in Figure 4.9, then we can restrict 𝜃 to be in
(−𝜋, 𝜋), giving us a well-defined function log 𝑧. We will show

4.12. Principal Logarithm

Let 𝐺1 be the open set in Figure 4.9. Then

log 𝑧 = log 𝑟 + 𝑖𝜃, 𝑟 > 0,−𝜋 < 𝜃 < 𝜋,

is a branch of log 𝑧 on 𝐺1, with

(log 𝑧) ′ = 1
𝑧
. (4.16)

Let 𝐺1 and 𝐺2 be as in Figure 4.9. By definition, the principal logarithm is a
function satisfying

𝑒log 𝑧 = 𝑧, 𝑧 in 𝐺1.

We show log 𝑧 is holomorphic on 𝐺2 using the CR equation. On 𝐺2, we have

𝑟 =
√
𝑥2 + 𝑦2, 𝜃 = arctan

( 𝑦
𝑥

)
, 𝑟 > 0,−𝜋/2 < 𝜃 < 𝜋/2.

Hence
𝜕𝑟

𝜕𝑥
=
𝑥

𝑟
,

𝜕𝜃

𝜕𝑥
= − 𝑦

𝑟2 ,

which leads to

𝜕 log 𝑧
𝜕𝑥

=
𝜕

𝜕𝑥
(log 𝑟 + 𝑖𝜃) = 𝑥

𝑟2 − 𝑖
𝑦

𝑟2 =
𝑧

𝑧𝑧
=

1
𝑧
.

Similarly,

1
𝑖

𝜕 log 𝑧
𝜕𝑦

=
1
𝑖

𝜕

𝜕𝑦
(log 𝑟 + 𝑖𝜃) = 1

𝑖

( 𝑦
𝑟2 + 𝑖

𝑥

𝑟2

)
=

𝑧

𝑧𝑧
=

1
𝑧
.

This shows log 𝑧 is holomorphic on 𝐺2 and establishes (4.16). To extend this result
to 𝐺1, we bring in

√
𝑧.

Let 𝐺 be an open set. A branch of
√
𝑧 on 𝐺 is a holomorphic function 𝑓 (𝑧)

satisfying
( 𝑓 (𝑧))2 = 𝑧, 𝑧 in 𝐺.

When there is a branch of
√
𝑧 on 𝐺, we say

√
𝑧 is holomorphic on 𝐺.

We will also show
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4.13. Principal Square Root

Let 𝐺1 be the open set in Figure 4.9. Then
√
𝑧 =

√
𝑟𝑒𝑖 𝜃/2, 𝑟 > 0,−𝜋 < 𝜃 < 𝜋,

is a branch of
√
𝑧 on 𝐺1, with

(
√
𝑧) ′ = 1

2
√
𝑧
. (4.17)

By definition, the principal square root is a function satisfying (√𝑧)2 = 𝑧. To
show

√
𝑧 is holomorphic on 𝐺1, we first establish

√
𝑟𝑒𝑖 𝜃/2 =

𝑧 + 𝑟
√

2𝑥 + 2𝑟
, 𝑟 > 0,−𝜋 < 𝜃 < 𝜋. (4.18)

Since both sides square to 𝑧, they are either equal or negatives of each other. But
both sides lie in 𝐺2, so cannot be negatives of each other. This establishes (4.18).

Using the CR equation, we derive (4.17). If 𝐷 =
√

2𝑥 + 2𝑟 , then we can write

𝑤 =
√
𝑧 =

𝑧 + 𝑟

𝐷
.

Then
𝜕𝐷

𝜕𝑥
=

1
𝐷

𝜕

𝜕𝑥
(𝑥 + 𝑟) = 1 + 𝑥/𝑟

𝐷
=

(𝑥 + 𝑟)
𝐷𝑟

and
𝜕𝐷

𝜕𝑦
=

𝑦

𝐷𝑟
.

Moreover we have
𝑤�̄� = |𝑤 |2 = |𝑤2 | = |𝑧 | = 𝑟.

We introduce notation that streamlines the computation. The CR equation may
be rewritten

𝜕 𝑓

𝜕𝑥
+ 𝑖

𝜕 𝑓

𝜕𝑦
= 0.

It is useful to give the left side a name.
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The d-bar Operator

The CR equation is
𝜕 𝑓 = 0,

where
𝜕 =

𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦

is the d-bar operator.

For example,
𝜕𝐷 =

𝑧 + 𝑟

𝐷𝑟
.

We compute

𝜕𝑧 =
𝜕𝑧

𝜕𝑥
+ 𝑖

𝜕𝑧

𝜕𝑦
= 1 + 𝑖 · 𝑖 = 1 − 1 = 0

and
𝜕 (𝑧 + 𝑟) = 𝜕𝑟 =

𝑥

𝑟
+ 𝑖

𝑦

𝑟
=

𝑧

𝑟
.

Then

𝜕𝑤 =
𝐷𝑧/𝑟 − (𝑧 + 𝑟) (𝑧 + 𝑟)/𝐷𝑟

𝐷2 =
𝑧𝐷2 − (𝑧 + 𝑟)2

𝑟𝐷3 =
2𝑧(𝑥 + 𝑟) − (𝑧 + 𝑟)2

𝑟𝐷3 .

Because 𝑟2 = 𝑥2 + 𝑦2,

2𝑧(𝑥 + 𝑟) − (𝑧 + 𝑟)2 = 2𝑧𝑥 − 𝑧2 − 𝑟2 = −(𝑧 − 𝑥)2 − 𝑦2 = 0,

hence 𝜕𝑤 = 0. This shows𝑤 =
√
𝑧 satisfies the CR equation, hence

√
𝑧 is holomorphic

on 𝐺1.
Since

𝜕

𝜕𝑥
(𝑧 + 𝑟) = 1 + 𝑥

𝑟
,

we have

𝑤′ =
𝜕𝑤

𝜕𝑥
=

(1 + 𝑥/𝑟) · 𝐷 − (𝑧 + 𝑟) · (𝑥 + 𝑟)/𝐷𝑟

𝐷2

=
2(𝑥 + 𝑟)2 − (𝑧 + 𝑟) (𝑥 + 𝑟)

2𝑟𝐷 (𝑥 + 𝑟)

=
2𝑥 + 2𝑟 − 𝑧 − 𝑟

2𝑟𝐷

=
𝑧 + 𝑟

2𝑟𝐷
=

�̄�

2𝑟
=

�̄�

2𝑤�̄�
=

1
2
√
𝑧
.

This establishes (4.17).
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It remains to be shown that log 𝑧 is holomorphic on 𝐺1. For this, we use the chain
rule. By definition of

√
𝑧 and log 𝑧 on 𝐺1, 2 log

√
𝑧 equals

2 log
(√

𝑟𝑒𝑖 𝜃/2
)
= 2

(
log

√
𝑟 + 𝑖

𝜃

2

)
= 2

(
1
2

log 𝑟 + 𝑖
𝜃

2

)
= log 𝑟 + 𝑖𝜃 = log 𝑧,

so we have
log 𝑧 = 2 log

√
𝑧

on 𝐺1. Since
√
𝑧 lies in 𝐺2, this expresses log 𝑧 as a composition of a holomorphic

function
√
𝑧 on 𝐺1 with a holomorphic function log 𝑧 on 𝐺2. By the chain rule

(Theorem 4.3), log 𝑧 is holomorphic on 𝐺1, with

(log 𝑧) ′ = (2 log
√
𝑧) ′ = 2

1
√
𝑧
· 1

2
√
𝑧
=

1
𝑧
.

Recall arctan takes values in (−𝜋/2, 𝜋/2), and

arctan
( 𝑦
𝑥

)
+ arctan

(
𝑥

𝑦

)
=

𝜋

2
, 𝑥 > 0, 𝑦 > 0.

Another way to show log 𝑧 is holomorphic on 𝐺1 is to check

log 𝑧 = log 𝑟 + 𝑖𝜃 =


log

(√
𝑥2 + 𝑦2

)
+ 𝑖 arctan

( 𝑦
𝑥

)
, 𝑥 > 0,

log
(√

𝑥2 + 𝑦2
)
+ 𝑖

(
𝜋

2
− arctan

(
𝑥

𝑦

))
, 𝑦 > 0,

log
(√

𝑥2 + 𝑦2
)
− 𝑖

(
𝜋

2
− arctan

(
𝑥

−𝑦

))
, 𝑦 < 0.

is consistently defined on the overlaps, and to check the CR equation directly.

Exercises

Problem 4.1 With 𝑓 (𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), show the CR equation becomes the pair
of equations,

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −𝜕𝑣

𝜕𝑥
.

Problem 4.2 Let 𝐹 (𝑢, 𝑣) be a differentiable non-constant function of two real vari-
ables 𝑢 and 𝑣. If 𝑢 = 𝑢(𝑥, 𝑦) and 𝑣 = 𝑣(𝑥, 𝑦) are the real and imaginary parts of a
holomorphic 𝑓 (𝑧) on an open set 𝐺, then 𝐹 (𝑢, 𝑣) = 0 on 𝐺 implies 𝑓 ′(𝑧) = 0 on 𝐺.



Chapter 5
Contour Integration

5.1 Contour Integrals

If 𝐶 is a connected contour 𝑧(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2, as in (4.1) and 𝑓 (𝑧) is a continuous
function on 𝐶, the contour integral is∫

𝐶
𝑓 (𝑧) 𝑑𝑧 =

∫ 𝑡2

𝑡1

𝑓 (𝑧(𝑡)) 𝑧′(𝑡) 𝑑𝑡.

Note the integral on the right is a complex integral as in §3.5. Thus a contour integral
is a particular kind of complex integral.

Since 𝑧 inside the integral is a dummy variable, we may use any other variable,∫
𝐶

𝑓 (𝑧) 𝑑𝑧 =
∫
𝐶

𝑓 (𝑤) 𝑑𝑤.

The simplest contour is [𝑎, 𝑎 + ℎ]. Over this contour, 𝑧(𝑡) = 𝑎 + 𝑡ℎ, 0 ≤ 𝑡 ≤ 1, so
𝑧′(𝑡) = ℎ, leading to ∫

[𝑎,𝑎+ℎ]
𝑓 (𝑧) 𝑑𝑧 = ℎ ·

∫ 1

0
𝑓 (𝑎 + 𝑡ℎ) 𝑑𝑡. (5.1)

If 𝐶 = 𝐶 (𝑐, 𝑟),we have 𝑧(𝜃) = 𝑐 + 𝑟𝑒𝑖 𝜃 , 0 ≤ 𝜃 ≤ 2𝜋, and 𝑧′(𝜃) = 𝑖𝑟𝑒𝑖 𝜃 , so∫
𝐶

𝑑𝑧

𝑧 − 𝑐
=

∫
𝐶

1
𝑧 − 𝑐

𝑑𝑧 =
∫ 2𝜋

0

𝑖𝑟𝑒𝑖 𝜃

𝑟𝑒𝑖 𝜃
𝑑𝜃 = 2𝜋𝑖. (5.2)

More generally, for any sum of connected contours (§4.1)

𝐶 = 𝐶1 + 𝐶2 + · · · + 𝐶𝑛,

we set

89
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𝐶

𝑓 (𝑧) 𝑑𝑧 =
∫
𝐶1

𝑓 (𝑧) 𝑑𝑧 +
∫
𝐶2

𝑓 (𝑧) 𝑑𝑧 + · · · +
∫
𝐶𝑛

𝑓 (𝑧) 𝑑𝑧.

This we call contour additivity. In particular, we have∫
𝑛𝐶

𝑓 (𝑧) 𝑑𝑧 = 𝑛

∫
𝐶

𝑓 (𝑧) 𝑑𝑧,

for any contour 𝐶.
When 𝑡 in [𝑡1, 𝑡2] is a continuously differentiable function 𝑡 (𝑠) of 𝑠 in [𝑠1, 𝑠2],

and 𝐶1 is the contour given by 𝑧1 (𝑠) = 𝑧(𝑡 (𝑠)), 𝑠1 ≤ 𝑠 ≤ 𝑠2, by Theorem 3.6,∫ 𝑡2

𝑡1

𝑓 (𝑧(𝑡)) 𝑧′(𝑡) 𝑑𝑡 =
∫ 𝑠2

𝑠1

𝑓 (𝑧(𝑡 (𝑠))) 𝑧′(𝑡 (𝑠))𝑡 ′(𝑠) 𝑑𝑠 =
∫ 𝑠2

𝑠1

𝑓 (𝑧1 (𝑠)) 𝑧′1 (𝑠) 𝑑𝑠,

so ∫
𝐶

𝑓 (𝑧) 𝑑𝑧 =
∫
𝐶1

𝑓 (𝑧) 𝑑𝑧.

Thus the contour integrals over equivalent (§4.1) connected contours agree.
For example, the contour integral over 𝑒𝑖𝑡 , 0 ≤ 𝑡 ≤ 2𝜋, is the same as the contour

integral over 𝑒𝑖𝑡 , −𝜋 ≤ 𝑡 ≤ 𝜋. However,∫
−𝐶

𝑓 (𝑧) 𝑑𝑧 = −
∫
𝐶

𝑓 (𝑧) 𝑑𝑧,

because ∫ −𝑡1

−𝑡2
𝑓 (𝑧(−𝑡)) 𝑧′(−𝑡) 𝑑𝑡 = −

∫ 𝑡2

𝑡1

𝑓 (𝑧(𝑡) 𝑧′(𝑡 (𝑠))𝑑𝑡.

Thus
𝐶 + (−𝐶) = 𝐶 − 𝐶 = 0,

in the sense ∫
𝐶

𝑓 (𝑧) 𝑑𝑧 +
∫
−𝐶

𝑓 (𝑧) 𝑑𝑧 = 0,

for any 𝑓 (𝑧) continuous on 𝐶.
We begin with a simple but fundamental observation. Let 𝑓 (𝑧) be a continuous

function defined on an open set 𝐺. We say the contour integrals of 𝑓 (𝑧) are path-
independent in 𝐺 if for any two points 𝑎 and 𝑏 in 𝐺 and for any two connected
contours 𝐶, 𝐶 ′ in 𝐺 starting at 𝑎 and ending at 𝑏,∫

𝐶
𝑓 (𝑧) 𝑑𝑧 =

∫
𝐶′

𝑓 (𝑧) 𝑑𝑧.
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5.1. Path-Independence of Contour Integrals

Let 𝑓 (𝑧) be a continuous function defined on an open set𝐺. Then the contour
integrals of 𝑓 (𝑧) are path-independent in 𝐺 if and only if∫

𝐶
𝑓 (𝑧) 𝑑𝑧 = 0

for every closed contour 𝐶 in 𝐺.

Proof Let 𝑎, 𝑏 be in 𝐺 and suppose 𝐶, 𝐶 ′ are connected contours starting at 𝑎 and
ending at 𝑏. Then 𝐶 − 𝐶 ′ is a closed connected contour. If the integrals over closed
contours vanish, then∫

𝐶
𝑓 (𝑧) 𝑑𝑧 −

∫
𝐶′

𝑓 (𝑧) 𝑑𝑧 =
∫
𝐶−𝐶′

𝑓 (𝑧) 𝑑𝑧 = 0,

so the contour integrals of 𝑓 (𝑧) are path-independent in 𝐺. Conversely, suppose the
contour integrals of 𝑓 (𝑧) are path-independent in 𝐺, let 𝐶 be a closed connected
contour in 𝐺, and let 𝑎 be a point on 𝐶. Then 𝐶 starts and ends at 𝑎. By path-
independence, the integral over 𝐶 equals the integral over the constant contour
𝑧(𝑡) ≡ 𝑎, which is zero. Since a closed contour is the sum of connected closed
contours, the result follows. □

Let 𝑓 (𝑧) be a function on an open set 𝐺. If 𝐹 (𝑧) is holomorphic and satisfies
𝐹 ′(𝑧) = 𝑓 (𝑧) on 𝐺, we say 𝐹 (𝑧) is an anti-derivative of 𝑓 (𝑧) on 𝐺. When this
happens, we have path-independence.

5.2. Contour Fundamental Theorem of Calculus

Let 𝐶 be a connected contour starting at 𝑎, and ending at 𝑏. Let 𝑓 (𝑧) be a
continuous function defined on an open set 𝐺 containing 𝐶, and let 𝐹 (𝑧) be
an anti-derivative of 𝑓 (𝑧) on 𝐺. Then∫

𝐶
𝑓 (𝑧) 𝑑𝑧 = 𝐹 (𝑏) − 𝐹 (𝑎).

Proof This follows from the contour chain rule (4.4) and the complex fundamental
theorem of calculus, since∫

𝐶
𝑓 (𝑧) 𝑑𝑧 =

∫ 𝑡2

𝑡1

𝐹 ′(𝑧(𝑡))𝑧′(𝑡) 𝑑𝑡 =
∫ 𝑡2

𝑡1

𝑑

𝑑𝑡
𝐹 (𝑧(𝑡)) 𝑑𝑡

= 𝐹 (𝑧(𝑡2)) − 𝐹 (𝑧(𝑡1)) = 𝐹 (𝑏) − 𝐹 (𝑎).
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Let 𝐺 be an open set containing the unit circle 𝐶 and suppose we have a branch
𝑓 (𝑧) of log 𝑧 on 𝐺. Then∫

𝐶

𝑑𝑧

𝑧
=

∫
𝐶

𝑓 ′(𝑧) 𝑑𝑧 = 𝑓 (1) − 𝑓 (1) = 0,

which contradicts the answer 2𝜋𝑖 in (5.2). Therefore an open set containing the unit
circle cannot support a branch of log 𝑧. This is another illustration why 𝐺 = 𝐺1
(Figure 4.9) is cut along the negative reals.

Here is a result that will be used frequently.

5.3. Path-Independence iff the Anti-Derivative Exists

Let 𝐺 be an open set, and let 𝑓 (𝑧) be continuous on 𝐺. Then there is an
antiderivative 𝐹 (𝑧) on 𝐺 if and only if∫

𝐶
𝑓 (𝑧) 𝑑𝑧 = 0, (5.3)

for every closed contour 𝐶 in 𝐺.

Proof If 𝑓 (𝑧) = 𝐹 ′(𝑧) on 𝐺, by Theorem 5.2, (5.3) holds for every closed con-
nected contour𝐶, hence for every closed contour𝐶. Conversely, suppose (5.3) holds
for every closed contour 𝐶. We define an anti-derivative 𝐹 (𝑧) separately on each
connected component 𝐺1 of 𝐺.

Fix a point 𝑐 in 𝐺1. For 𝑧 in 𝐺1, define

𝐹 (𝑧) =
∫
𝐶

𝑓 (𝑤) 𝑑𝑤, (5.4)

following any connected contour 𝐶 starting at 𝑐 and ending at 𝑧. By assumption,
integrals over closed contours vanish. By Theorem 5.1, we have path-independence,
hence 𝐹 (𝑧) is well-defined. We show 𝐹 ′(𝑧) = 𝑓 (𝑧).

Assume ℎ is such that the contour [𝑧, 𝑧 + ℎ] lies in 𝐺1. By definition, 𝐹 (𝑧) is
the integral over any connected contour 𝐶 starting at 𝑐 and ending at 𝑧. Pick one
such connected contour 𝐶. Since 𝐹 (𝑧 + ℎ) is the integral over any connected contour
starting at 𝑐 and ending at 𝑧 + ℎ, we may assume 𝐹 (𝑧 + ℎ) is the integral over the
connected contour 𝐶 + [𝑧, 𝑧 + ℎ], i.e., over 𝐶 followed by the segment [𝑧, 𝑧 + ℎ].
With this choice of connected contour, 𝐹 (𝑧 + ℎ) −𝐹 (𝑧) is the integral over [𝑧, 𝑧 + ℎ],
hence by (5.1),

𝐹 (𝑧 + ℎ) − 𝐹 (𝑧) = ℎ ·
∫ 1

0
𝑓 (𝑧 + 𝑡ℎ) 𝑑𝑡.

By Theorem 4.5, 𝐹 ′(𝑧) exists and equals 𝑓 (𝑧). □

To be consistent with contour integral notation, we write
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|𝑑𝑧 | = |𝑑𝑥 + 𝑖𝑑𝑦 | =
√
𝑑𝑥2 + 𝑑𝑦2 =

√
𝑥 ′(𝑡)2 + 𝑦′(𝑡)2 𝑑𝑡 = |𝑧′(𝑡) | 𝑑𝑡.

Then the length of a contour 𝐶 is

|𝐶 | =
∫
𝐶
|𝑑𝑧 |.

5.4. Triangle Inequality for Contour Integrals

Let 𝑀 be the maximum value of | 𝑓 (𝑧) | over a contour 𝐶. Then����∫
𝐶

𝑓 (𝑧) 𝑑𝑧
���� ≤ ∫

𝐶
| 𝑓 (𝑧) | |𝑑𝑧 | ≤ 𝑀 |𝐶 |.

Proof By contour additivity and the triangle inequality, it is enough to derive the
inequality when 𝐶 is connected as in (4.1). Let 𝐶 be given by 𝑧(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2. By
Theorem 3.4,����∫

𝐶
𝑓 (𝑧) 𝑑𝑧

���� = ����∫ 𝑡2

𝑡1

𝑓 (𝑧(𝑡))𝑧′(𝑡) 𝑑𝑡
����

≤
∫ 𝑡2

𝑡1

| 𝑓 (𝑧(𝑡))𝑧′(𝑡) | 𝑑𝑡 =
∫ 𝑡2

𝑡1

| 𝑓 (𝑧(𝑡)) | |𝑧′(𝑡) | 𝑑𝑡 =
∫
𝐶
| 𝑓 (𝑧) | |𝑑𝑧 |.

Since | 𝑓 (𝑧) | ≤ 𝑀 on 𝐶,∫
𝐶
| 𝑓 (𝑧) | |𝑑𝑧 | ≤

∫
𝐶
𝑀 |𝑑𝑧 | = 𝑀 |𝐶 |.

Using contour integrals, we can construct many examples of holomorphic func-
tions.
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5.5. Differentiation Under the Contour Integral

Let 𝑓 (𝑧) be a continuous function on a contour 𝐶. Then

𝐹 (𝑧) =
∫
𝐶

𝑓 (𝑤) 𝑑𝑤
𝑤 − 𝑧

(5.5)

has derivatives 𝐹 (𝑛) (𝑧) of all orders for all 𝑧 not on 𝐶, with

𝐹 (𝑛) (𝑧) = 𝑛!
∫
𝐶

𝑓 (𝑤) 𝑑𝑤
(𝑤 − 𝑧)𝑛+1 (5.6)

for 𝑛 ≥ 1.

Proof The complement 𝐺 of 𝐶 is open (Theorem 4.1). For 𝛿 > 0, let 𝐺 𝛿 be the set
of points 𝑧 with distance from 𝐶 greater than 𝛿,

|𝑧 − 𝑤 | > 𝛿, 𝑤 in 𝐶.

Then 𝐺 𝛿 is open, and 𝑧 not in 𝐶 implies 𝑧 is in 𝐺 𝛿 for some 𝛿 > 0. This is the same
as saying 𝐺 is the union of 𝐺 𝛿 over all 𝛿 > 0.

Let 𝐹𝑛 (𝑧) denote the right side of (5.6), and let 𝑀 be the maximum of 𝑓 (𝑤) on
𝐶. By the triangle inequality,

|𝐹𝑛 (𝑧) | ≤
|𝐶 | 𝑛!𝑀
𝛿𝑛+1

for 𝑧 in 𝐺 𝛿 , so 𝐹𝑛 (𝑧) is bounded on 𝐺 𝛿 , for every 𝑛.
By (5.5), 𝐹0 (𝑧) = 𝐹 (𝑧). We establish (5.6) by showing 𝐹 ′

𝑛 (𝑧) = 𝐹𝑛+1 (𝑧). Then

𝐹𝑛 (𝑧) = (𝐹𝑛−1 (𝑧)) ′ = ((𝐹𝑛−2 (𝑧)) ′) ′ = (𝐹𝑛−2 (𝑧)) ′′ = · · · = 𝐹 (𝑛)
0 (𝑧),

which establishes (5.6).
Suppose 𝑧 and ℎ are such that the contour [𝑧, 𝑧 + ℎ] lies in 𝐺 𝛿 . Differentiating,

𝑑

𝑑𝑡

𝑛!
(𝑤 − 𝑧 − 𝑡ℎ)𝑛+1 = ℎ · (𝑛 + 1)!

(𝑤 − 𝑧 − 𝑡ℎ)𝑛+2 .

By the fundamental theorem of calculus,

𝑛!
(𝑤 − 𝑧 − ℎ)𝑛+1 − 𝑛!

(𝑤 − 𝑧)𝑛+1 = ℎ ·
∫ 1

0

(𝑛 + 1)!
(𝑤 − 𝑧 − 𝑡ℎ)𝑛+2 𝑑𝑡.

Multiplying by 𝑓 (𝑤) and integrating over 𝐶, then switching the order of integration
(Theorem 3.7),



5.2 Winding Numbers 95

𝐹𝑛 (𝑧 + ℎ) − 𝐹𝑛 (𝑧) = ℎ ·
∫ 1

0
𝐹𝑛+1 (𝑧 + 𝑡ℎ) 𝑑𝑡. (5.7)

Since 𝐹𝑛 (𝑧) is bounded on 𝐺 𝛿 , for every 𝑛, (5.7) implies 𝐹𝑛 (𝑧) is continuous on 𝐺 𝛿 ,
for every 𝑛. By Theorem 4.5 (applied on 𝐺 = 𝐺 𝛿), 𝐹 ′

𝑛 (𝑧) exists and equals 𝐹𝑛+1 (𝑧),
on 𝐺 𝛿 , for every 𝑛. □

For example, if 𝑓 (𝑥) is a continuous function of 0 ≤ 𝑥 ≤ 1, the integral

𝐹 (𝑎) =
∫ 1

0

𝑓 (𝑥) 𝑑𝑥
𝑥 + 𝑎

, 𝑎 in 𝐺1,

is holomorphic. When 𝑓 (𝑥) ≡ 1, we already know this, since∫ 1

0

𝑑𝑥

𝑥 + 𝑎
= log(1 + 𝑎) − log 𝑎, 𝑎 in 𝐺1.

5.2 Winding Numbers

Let 𝐶 be any contour and let 𝑐 be a number not on 𝐶. We define

𝑁 (𝐶, 𝑐) = 1
2𝜋𝑖

∫
𝐶

𝑑𝑧

𝑧 − 𝑐
.

Then, by contour additivity,

𝑁 (𝐶1 + 𝐶2 + · · · + 𝐶𝑛, 𝑐) = 𝑁 (𝐶1, 𝑐) + 𝑁 (𝐶2, 𝑐) + · · · + 𝑁 (𝐶𝑛, 𝑐),

whenever 𝑐 does not lie on any of 𝐶1, 𝐶2, . . . , 𝐶𝑛, and

𝑁 (−𝐶, 𝑐) = −𝑁 (𝐶, 𝑐),

whenever 𝑐 does not lie on ±𝐶. When 𝐶 is closed, we call 𝑁 (𝐶, 𝑐) the winding
number of 𝐶 around 𝑐.

For example, if 𝐶 = 𝐶 (𝑐, 𝑟) is the circle with radius 𝑟 and center 𝑐 (Figure 4.2),
(5.2) shows 𝑁 (𝐶, 𝑐) = 1. So a circle winds once in the counter-clockwise direction
about its center.

Another example is a rectangle centered at the origin 0. Let 𝑅 be a rectangle
centered at the origin 0, and let 𝐶 be the perimeter of 𝑅 taken in the counter-
clockwise direction. Following Figure 5.1, the substitution 𝑧 → −𝑧 shows∫

𝐶+

𝑑𝑧

𝑧
=

∫
𝐶−

𝑑𝑧

𝑧
,

so 𝑁 (𝐶+, 0) = 𝑁 (𝐶−, 0). With log 𝑧 the principal logarithm on𝐺1, we have (log 𝑧) ′ =
1/𝑧. By Theorem 5.2,
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𝐶+

𝑑𝑧

𝑧
= log 𝑖 − log(−𝑖) =

(
log 1 + 𝑖

𝜋

2

)
−

(
log 1 − 𝑖

𝜋

2

)
= 𝑖𝜋.

Since 𝐶 = 𝐶+ + 𝐶−, this implies 𝑁 (𝐶, 0) = 1. Since the substitution 𝑧 → 𝑧 + 𝑐
translates a rectangle centered at 𝑐 to a rectangle centered at 0, the same conclusion
holds in general, or the perimeter of a rectangle winds once in the counter-clockwise
direction about its center.

𝐺1

𝐶+𝐶−

𝑟𝑒

𝑖𝑚

𝑖

−𝑖

0

Fig. 5.1 A rectangle with perimeter 𝐶 = 𝐶+ +𝐶−

For a general closed contour, we have

5.6. Winding Number is an Integer

If 𝐶 is a closed contour, and 𝑐 is not on 𝐶, then the winding number 𝑁 (𝐶, 𝑐)
is an integer.

Proof By contour additivity, we may assume 𝐶 is a closed connected contour. Let
𝐶 be given by 𝑧(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2, and let

ℎ(𝑡) =
∫ 𝑡

𝑡1

𝑧′(𝑠)
𝑧(𝑠) − 𝑐

𝑑𝑠, 𝑡1 ≤ 𝑡 ≤ 𝑡2.
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Then ℎ(𝑡2) = 2𝜋𝑖𝑁 (𝐶, 𝑐), ℎ(𝑡1) = 0, 𝑧(𝑡1) = 𝑧(𝑡2), and

ℎ′(𝑡) = 𝑧′(𝑡)
𝑧(𝑡) − 𝑐

, 𝑡1 ≤ 𝑡 ≤ 𝑡2.

Now
𝑑

𝑑𝑡
𝑒−ℎ (𝑡) (𝑧(𝑡) − 𝑐) = 𝑒−ℎ (𝑡) (−ℎ′(𝑡) (𝑧(𝑡) − 𝑐) + 𝑧′(𝑡)) = 0,

so
𝑒−ℎ (𝑡2) (𝑧(𝑡2) − 𝑐) = 𝑒−ℎ (𝑡1) (𝑧(𝑡1) − 𝑐).

Since 𝑧(𝑡1) = 𝑧(𝑡2), this implies

𝑒−ℎ (𝑡2) = 1,

so 𝑁 (𝐶, 𝑐) = ℎ(𝑡2)/2𝜋𝑖 is an integer. □

If𝐶 is a closed contour, then the complement 𝐺 = C−𝐶 is an open set. Therefore
(§4.2) C − 𝐶 is a disjoint union of connected components

C − 𝐶 = 𝐺1 ∪ 𝐺2 ∪ 𝐺3 ∪ . . .

When 𝐶 is a closed contour, we show 𝑁 (𝐶, 𝑎) is a constant function of 𝑎 on each
connected component of the complement of 𝐶.

5.7. Winding Number is Constant

Let 𝐶 be a closed contour. Then 𝑁 (𝐶, 𝑧) is constant on each connected com-
ponent of the complement of 𝐶. Moreover, 𝑁 (𝐶, 𝑧) = 0 on the unbounded
component of the complement of 𝐶, which we write as 𝑁 (𝐶,∞) = 0. In
particular, when 𝐶 is the perimeter of a disk, or 𝐶 is the perimeter of a
rectangle, both taken counter-clockwise,

𝑁 (𝐶, 𝑧) =
{

1 𝑧 inside
0 𝑧 outside.

(5.8)

Proof Let 𝑓 (𝑤) = 1/2𝜋𝑖 and let 𝐹 (𝑧) be as in (5.5). Then 𝐹 (𝑧) = 𝑁 (𝐶, 𝑧). By
Theorem 5.5, 𝑁 (𝐶, 𝑧) is holomorphic on the complement of 𝐶. Since 𝐶 is closed,
by Theorem 5.3,

2𝜋𝑖
𝑑

𝑑𝑧
𝑁 (𝐶, 𝑧) =

∫
𝐶

1
(𝑤 − 𝑧)2 𝑑𝑤 =

∫
𝐶

𝑑

𝑑𝑤

(
−1

𝑤 − 𝑧

)
𝑑𝑤 = 0.

By Theorem 4.6, 𝑁 (𝐶, 𝑧) is constant on connected components of C − 𝐶.
Now, for any contour 𝐶, we have
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lim
𝑧→∞

𝑁 (𝐶, 𝑧) = lim
𝑎→∞

∫
𝐶

𝑑𝑧

𝑧 − 𝑎
= 0.

Since 𝑁 (𝐶, 𝑧) is constant on the unbounded component of the complement of 𝐶,
this shows 𝑁 (𝐶, 𝑧) = 0 for 𝑧 in the unbounded component of the complement of 𝐶.

Let𝐶 be the perimeter of a disk or a rectangle, both centered at 𝑐. The complement
of 𝐶 consists of two connected components, the inside, and the outside. Since we
already showed 𝑁 (𝐶, 𝑐) = 1 and 𝑁 (𝐶, 𝑧) is constant on the inside, 𝑁 (𝐶, 𝑧) = 1 for 𝑧
inside. Since 𝑁 (𝐶, 𝑧) = 0 is constant on the outside and 𝑁 (𝐶,∞) = 0, 𝑁 (𝐶, 𝑧) = 0
for 𝑧 outside. □

𝑐 − 𝑟 𝑐 𝑐 + 𝑟

𝐶+
𝑟

Fig. 5.2 The closed contour 𝐶+
𝑟

Let 𝐶 be a closed contour and let 𝑧 be a point not on 𝐶. Then the winding number
𝑁 (𝐶, 𝑧) is an integer 0,±1,±2, . . . . We say 𝐶 winds around 𝑎 if 𝑁 (𝐶, 𝑧) ≠ 0, and
𝐶 does not wind around 𝑎 if 𝑁 (𝐶, 𝑧) = 0. With this terminology, we may say no
closed contour winds about ∞.

Let 𝐶+ (𝑐, 𝑟) be the upper half-circle 𝑧(𝜃) = 𝑐 + 𝑟𝑒𝑖 𝜃 , 0 ≤ 𝜃 ≤ 𝜋, and let 𝐶+
𝑟 be

the closed connected contour in Figure 5.2,

𝐶+
𝑟 = 𝐶+ (𝑐, 𝑟) + [𝑐 − 𝑟, 𝑐 + 𝑟] .

We show 𝑁 (𝐶+
𝑟 , 𝑧) = 1 when 𝑧 is inside 𝐶+

𝑟 , and 𝑁 (𝐶+
𝑟 , 𝑧) = 0 when 𝑧 is outside 𝐶+

𝑟 .
Let 𝐶− (𝑐, 𝑟) be the lower half-circle 𝑧(𝜃) = 𝑐 + 𝑟𝑒𝑖 𝜃 , −𝜋 ≤ 𝜃 ≤ 0, and let 𝐶−

𝑟 be
the closed connected contour

𝐶−
𝑟 = 𝐶− (𝑐, 𝑟) + [𝑐 + 𝑟, 𝑐 − 𝑟] = 𝐶− (𝑐, 𝑟) − [𝑐 − 𝑟, 𝑐 + 𝑟] .

Then
𝐶 (𝑐, 𝑟) = 𝐶+ (𝑐, 𝑟) + 𝐶− (𝑐, 𝑟) = 𝐶+

𝑟 + 𝐶−
𝑟 .

When 𝑧 is outside 𝐶±
𝑟 , we have 𝑁 (𝐶±

𝑅, 𝑧) = 0, because 𝑧 can be connected to ∞
and 𝑁 (𝐶±

𝑅,∞) = 0. Let 𝑧 be inside 𝐶+
𝑟 . Then 𝑁 (𝐶−

𝑟 , 𝑧) = 0 because 𝑎 is outside 𝐶−
𝑟 ,
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and
𝑁 (𝐶+

𝑟 , 𝑧) = 𝑁 (𝐶+
𝑟 , 𝑧) + 𝑁 (𝐶−

𝑟 , 𝑧) = 𝑁 (𝐶 (𝑐, 𝑟), 𝑧) = 1. (5.9)

In short, when we combine𝐶+
𝑟 and its reflection𝐶−

𝑟 , the contours along the diameters
cancel, and we obtain 𝐶 (𝑐, 𝑟).

5.3 Branches

0 1 𝑟

𝑧

𝐺1

Fig. 5.3 The contour 𝐶 in 𝐺1

Given two complex numbers 𝑎 and 𝑏, let [𝑎, 𝑏] denote the line segment contour
(1 − 𝑡)𝑎 + 𝑡𝑏, 0 ≤ 𝑡 ≤ 1 (Figure 4.1). Using winding numbers, we will see which
open sets 𝐺 carry branches of the logarithm. When this happens, we say log 𝑧 is
holomorphic on 𝐺. For example, the principal logarithm (Theorem 4.12) is a branch
of log 𝑧 on 𝐺1.

5.8. Theorem

Let 𝐺 be an open set not containing 0. Then log 𝑧 is holomorphic on 𝐺 if
and only if 𝑁 (𝐶, 0) = 0 for every closed contour 𝐶 in 𝐺.

Proof By Theorem 4.11, 𝑓 (𝑧) is a branch of the logarithm if and only if 𝑓 (𝑧) is an
anti-derivative of 1/𝑧 on 𝐺. By Theorem 5.3, an anti-derivative exists if and only if

2𝜋𝑖𝑁 (𝐶, 0) =
∫
𝐶

𝑑𝑧

𝑧
= 0.

For example, since no closed contour winds around the origin in𝐺1 (Figure 4.10),
Theorem 5.8 implies there is a branch of log 𝑧 on𝐺1. Also, since the unit circle winds
about the origin, Theorem 5.8 implies there is no branch of log 𝑧 on C − 0. We now
show how we can recover the principal logarithm on 𝐺1 from Theorem 5.8.

Let 𝐹 (𝑧) be any branch of log 𝑧 on 𝐺1, and fix a point 𝑧 = 𝑟𝑒𝑖 𝜃 , −𝜋 < 𝜃 < 𝜋,
𝑟 > 0, in 𝐺1. Then 𝐹 (𝑧) − 𝐹 (1) equals the integral
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𝐶

𝑑𝑤

𝑤

over any contour 𝐶 starting at 1 and ending at 𝑧. If we use the contour 𝐶 in Figure
5.3, we obtain

𝐹 (𝑧) − 𝐹 (1) =
∫
𝐶

𝑑𝑤

𝑤
=

∫ 𝑟

1

𝑑𝑥

𝑥
+

∫ 𝜃

0

𝑖𝑟𝑒𝑖𝑡 𝑑𝑡

𝑟𝑒𝑖𝑡
= log 𝑟 +

∫ 𝜃

0
𝑖𝑑𝑡 = log 𝑟 + 𝑖𝜃,

so we recover the principal logarithm.
We now extend Theorem 5.8 to more general logs like log(𝑧2 − 1) or log(sin 𝑧).
We say 𝑓 (𝑧) is continuously holomorphic if 𝑓 (𝑧) is holomorphic and 𝑓 ′(𝑧) is

continuous. Theorem 6.4 shows a holomorphic function is continuously holomor-
phic, so this definition is superfluous. In other words, this section may be placed after
Theorem 6.4 without affecting the logical development, in which case this definition
would not be needed or mentioned. We present the material in this section at this
point as a source of examples for the theory.

5.9. Theorem

Suppose 𝑓 (𝑧) is continuously holomorphic and never zero on 𝐺 and let 𝐶
be a closed contour in 𝐺. Then

1
2𝜋𝑖

∫
𝐶

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧

equals the winding number 𝑁 ( 𝑓 (𝐶), 0) of the image 𝑓 (𝐶) about the origin.

Because 𝑓 (𝑧) is continuously holomorphic and nonzero, 𝑓 ′(𝑧)/ 𝑓 (𝑧) is continu-
ous, so the integral is well-defined. Note we are not saying 0 is not in 𝐺. We are
saying 0 is not in the image 𝑓 (𝐺).

Proof Let 𝐶 be 𝑧(𝑡), 𝑡1 ≤ 𝑡 ≤ 𝑡2. Then 𝑓 (𝐶) is 𝑤(𝑡) = 𝑓 (𝑧(𝑡)), 𝑡1 ≤ 𝑡 ≤ 𝑡2. Since
𝑤′(𝑡) = 𝑓 ′(𝑧(𝑡))𝑧′(𝑡),∫

𝐶

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

∫ 𝑡2

𝑡1

𝑓 ′(𝑧(𝑡))𝑧′(𝑡)
𝑓 (𝑧(𝑡)) 𝑑𝑡 =

∫ 𝑡2

𝑡1

𝑤′(𝑡)
𝑤(𝑡) 𝑑𝑡 =

∫
𝑓 (𝐶)

𝑑𝑤

𝑤
.

The result follows. □

Let 𝑓 (𝑧) be a holomorphic function on an open set 𝐺, and suppose 𝑓 (𝑧) is never
zero on 𝐺. A branch of log( 𝑓 (𝑧)) is by definition a holomorphic function 𝑔(𝑧)
satisfying

𝑒𝑔 (𝑧) = 𝑓 (𝑧), 𝑧 in 𝐺.

If there is such a branch, we say log( 𝑓 (𝑧)) is holomorphic on 𝐺.
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𝐶

𝐺

𝑤 = 𝑓 (𝑧)

𝑓 (𝐶)
𝑓 (𝐺)

0

Fig. 5.4 𝐶 and its image 𝑓 (𝐶) with 𝑓 (𝑧) ≠ 0

5.10. Theorem

Let 𝑓 (𝑧) be a continuously holomorphic function on an open set 𝐺, and
suppose 𝑓 (𝑧) is never zero on 𝐺. Then log( 𝑓 (𝑧)) is holomorphic on 𝐺 if
and only if 𝑁 ( 𝑓 (𝐶), 0) = 0 for every closed contour 𝐶 in 𝐺.

Proof If 𝑔(𝑧) plus a constant is a branch of log( 𝑓 (𝑧)), then 𝑒𝑔 (𝑧)/ 𝑓 (𝑧) is a constant
on 𝐺. Taking the derivative, this happens iff

0 =
𝑒𝑔 (𝑧)𝑔′(𝑧) 𝑓 (𝑧) − 𝑒𝑔 (𝑧) 𝑓 ′(𝑧)

𝑓 (𝑧)2 ,

which happens iff

𝑔′(𝑧) = 𝑓 ′(𝑧)
𝑓 (𝑧)

on 𝐺. Thus log( 𝑓 (𝑧)) is holomorphic on 𝐺 iff 𝑓 ′(𝑧)/ 𝑓 (𝑧) has a holomorphic anti-
derivative on 𝐺. By Theorems 5.3 and 5.9, this happens iff 𝑁 ( 𝑓 (𝐶), 0) = 0 for every
closed contour 𝐶 in 𝐺. □

We now show log(𝑧2 − 1) is holomorphic on 𝐺4 (Figure 5.5). To see this, note
𝑓 (𝑧) = 𝑧2 − 1 is never zero on 𝐺4, and

𝑓 ′(𝑧)
𝑓 (𝑧) =

2𝑧
𝑧2 − 1

=
1

𝑧 − 1
+ 1
𝑧 + 1

.

If𝐶 is a closed contour in 𝐺4, then integrating this last equation over𝐶 and recalling
Theorem 5.9 yields

𝑁 ( 𝑓 (𝐶), 0) = 𝑁 (𝐶, 1) + 𝑁 (𝐶,−1).
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But 𝐶 is in 𝐺4 so 𝐶 doesn’t touch (−∞,−1]. By continuity, 𝑁 (𝐶,−1) = 𝑁 (𝐶,∞) =
0. Similarly, 𝑁 (𝐶, 1) = 0. Hence 𝑁 ( 𝑓 (𝐶), 0) = 0. By Theorem 5.10, log(𝑧2 − 1) is
holomorphic on 𝐺4.

𝐺4

−1 1

Fig. 5.5 log(𝑧2 − 1) is holomorphic on 𝐺4

We now turn to square roots. To deal with them, we need to modify Theorem 5.3.

5.11. Theorem

Let 𝐺 be an open set and let 𝑓 (𝑧) be continuous on 𝐺. Then there is a
nonzero holomorphic 𝑔(𝑧) on 𝐺 satisfying

𝑔′(𝑧) = 𝑔(𝑧) 𝑓 (𝑧)

if and only if

exp
(∫

𝐶
𝑓 (𝑧) 𝑑𝑧

)
(5.10)

is path-independent in 𝐺.

If 𝑓 (𝑧) has an anti-derivative 𝐹 (𝑧) in 𝐺, then 𝑔(𝑧) = exp(𝐹 (𝑧)) satisfies 𝑔′(𝑧) =
𝑔(𝑧) 𝑓 (𝑧). This theorem covers cases where this is not so.

Proof Suppose a nonzero holomorphic 𝑔(𝑧) satisfying 𝑔′(𝑧) = 𝑔(𝑧) 𝑓 (𝑧) exists on
𝐺. Let 𝐶 and 𝐶 ′ be connected contours in 𝐺 having the same endpoints. Then

exp
(∫

𝐶
𝑓 (𝑧) 𝑑𝑧 −

∫
𝐶′

𝑓 (𝑧) 𝑑𝑧
)
= exp

(∫
𝐶−𝐶′

𝑔′(𝑧)
𝑔(𝑧) 𝑑𝑧

)
= exp (2𝜋𝑖𝑁 (𝑔(𝐶 − 𝐶 ′), 0)) .

Since𝐶−𝐶 ′ is a closed contour, 𝑔(𝐶−𝐶 ′) is a closed contour, hence 𝑁 (𝑔(𝐶−𝐶 ′), 0)
is an integer. We conclude (5.10) is path-independent in 𝐺.
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Conversely, suppose (5.10) is path-independent in 𝐺. We define 𝑔(𝑧) separately
on each connected component 𝐺1 of 𝐺. Fix a point 𝑐 in 𝐺1 and define

𝑔(𝑧) = exp
(∫

𝐶
𝑓 (𝑤) 𝑑𝑤

)
, (5.11)

over any connected contour 𝐶 starting at 𝑐 and ending at 𝑧 in 𝐺1. By path-
independence, 𝑔(𝑧) is well-defined. Choose a contour 𝐶 starting at 𝑐 and ending
at 𝑧. Let ℎ be such that the contour [𝑧, 𝑧 + ℎ] lies in 𝐺1. Then we may define 𝑔(𝑧 + ℎ)
by integrating over the contour 𝐶ℎ = 𝐶 + [𝑧, 𝑧 + ℎ]. Since

𝑔(𝑧 + 𝑡ℎ) = exp
(∫

𝐶𝑡ℎ

𝑓 (𝑤) 𝑑𝑤
)
= exp

(∫
𝐶

𝑓 (𝑤) 𝑑𝑤 + ℎ

∫ 𝑡

0
𝑓 (𝑧 + 𝑠ℎ) 𝑑𝑠

)
,

we have1
𝑔(𝑧 + 𝑡ℎ)
𝑔(𝑧) = exp

(
ℎ

∫ 𝑡

0
𝑓 (𝑧 + 𝑠ℎ) 𝑑𝑠

)
.

Differentiating,
𝑑

𝑑𝑡
𝑔(𝑧 + 𝑡ℎ) = ℎ 𝑔(𝑧 + 𝑡ℎ) 𝑓 (𝑧 + 𝑡ℎ).

Thus

𝑔(𝑧 + ℎ) − 𝑔(𝑧) = ℎ

∫ 1

0
𝑔(𝑧 + 𝑡ℎ) 𝑓 (𝑧 + 𝑡ℎ) 𝑑𝑡.

By Theorem 4.5, 𝑔′(𝑧) exists and equals 𝑔(𝑧) 𝑓 (𝑧). □

Let 𝑓 (𝑧) be a holomorphic function on an open set 𝐺, and suppose 𝑓 (𝑧) is
never zero on 𝐺. A branch of

√
𝑓 (𝑧) is by definition a holomorphic function 𝑔(𝑧)

satisfying
𝑔(𝑧)2 = 𝑓 (𝑧), 𝑧 in 𝐺.

When this happens, we say
√
𝑓 (𝑧) is holomorphic on 𝐺. For example, the principal

square root (Theorem 4.13) is a branch of
√
𝑧 on 𝐺1.

5.12. Theorem

Let 𝑓 (𝑧) be a continuously holomorphic function on an open set 𝐺, and
suppose 𝑓 (𝑧) is never zero on 𝐺. Then

√
𝑓 (𝑧) is holomorphic on 𝐺 if and

only if 𝑁 ( 𝑓 (𝐶), 0) is even for every closed contour 𝐶 in 𝐺.

Proof Suppose 𝐶 and 𝐶 ′ are connected contours in 𝐺 having the same endpoints.
Then 𝐶 − 𝐶 ′ is a closed contour, hence

1 Since 𝑓 (𝑧) is bounded in a disk centered at 𝑧, this shows 𝑔 (𝑧) is continuous at 𝑧, hence continuous
on 𝐺.
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exp
(
1
2

∫
𝐶

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 − 1

2

∫
𝐶′

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧

)
= exp

(
1
2

∫
𝐶−𝐶′

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧

)
= exp (𝜋𝑖𝑁 ( 𝑓 (𝐶 − 𝐶 ′), 0)) .

By assumption, 𝑁 ( 𝑓 (𝐶 − 𝐶 ′), 0) is even, so exp(𝜋𝑖𝑁 ( 𝑓 (𝐶 − 𝐶 ′), 0)) = 1, so

exp
(
1
2

∫
𝐶

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧

)
is path-independent in 𝐺. By Theorem 5.11 with 𝑓 replaced by 𝑓 ′/2 𝑓 , there is a
nonzero holomorphic function 𝑔(𝑧) on 𝐺 satisfying

𝑔′(𝑧) = 1
2
𝑔(𝑧) 𝑓

′(𝑧)
𝑓 (𝑧) . (5.12)

Since (
𝑔(𝑧)2

𝑓 (𝑧)

) ′
=

2𝑔(𝑧)𝑔′(𝑧) 𝑓 (𝑧) − 𝑔(𝑧)2 𝑓 ′(𝑧)
𝑓 (𝑧)2 = 0,

𝑔(𝑧) is a branch of
√
𝑐 𝑓 (𝑧), for some constant 𝑐. It follows that 𝑔(𝑧)/√𝑐 is a branch

of
√
𝑓 (𝑧).

Conversely, suppose 𝑔(𝑧) is holomorphic and satisfies 𝑔(𝑧)2 = 𝑓 (𝑧). Then (5.12)
holds, hence

𝑁 ( 𝑓 (𝐶), 0) = 1
2𝜋𝑖

∫
𝐶

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

1
2𝜋𝑖

∫
𝐶

2𝑔′(𝑧)
𝑔(𝑧) 𝑑𝑧 = 2𝑁 (𝑔(𝐶), 0).

Since 𝑁 (𝑔(𝐶), 0) is an integer, 𝑁 ( 𝑓 (𝐶), 0) is even. □

The simplest case is 𝑓 (𝑧) = 𝑧. Then Theorem 5.12 says
√
𝑧 is holomorphic on 𝐺

iff 𝑁 (𝐶, 0) is even for every closed contour 𝐶 in 𝐺. For example, since no closed
contour winds around the origin in 𝐺1 (Figure 4.10), Theorem 5.12 implies there is
a branch of

√
𝑧 on 𝐺1. Also, since the unit circle winds about the origin, Theorem

5.12 implies there is no branch of
√
𝑧 on C − 0. We now show how we can recover

the principal square root on 𝐺1 from Theorem 5.12.
Let 𝑔(𝑧) be any branch of

√
𝑧 on 𝐺1, and fix a point 𝑧 in 𝐺1. If 𝑧 = 𝑟𝑒𝑖 𝜃 ,

−𝜋 < 𝜃 < 𝜋, 𝑟 > 0, is a point in 𝐺1, then by (5.11),

𝑔(𝑧)
𝑔(1) = exp

(
1
2

∫
𝐶

𝑑𝑤

𝑤

)
,

over any contour 𝐶 starting at 1 and ending at 𝑤 in 𝐺1. If we use the contour 𝐶 in
Figure 5.3, we obtain

𝑔(𝑤)
𝑔(1) = exp

(
1
2
(log 𝑟 + 𝑖𝜃)

)
=
√
𝑟𝑒𝑖 𝜃/2,

so we recover the principal square root.
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The next simplest case is a quadratic with roots 𝑎 and 𝑏,√
𝑓 (𝑧) =

√
(𝑧 − 𝑎) (𝑧 − 𝑏), 𝑎 ≠ 𝑏.

We show
√
(𝑧 − 𝑎)(𝑧 − 𝑏) is holomorphic on 𝐺5 = C − [𝑎, 𝑏] (Figure 5.6).

𝐺5 𝑏

𝑎

Fig. 5.6
√
(𝑧 − 𝑎) (𝑧 − 𝑏) is holomorphic on 𝐺5

To see this, note 𝑓 (𝑧) is never zero on 𝐺5, and

𝑓 ′(𝑧)
𝑓 (𝑧) =

2𝑧 − (𝑎 + 𝑏)
(𝑧 − 𝑎)(𝑧 − 𝑏) =

1
𝑧 − 𝑎

+ 1
𝑧 − 𝑏

.

If𝐶 is a closed contour in 𝐺5, then integrating this last equation over𝐶 and recalling
Theorem 5.9 yields

𝑁 ( 𝑓 (𝐶), 0) = 𝑁 (𝐶, 𝑎) + 𝑁 (𝐶, 𝑏).

But 𝐶 is in 𝐺5 so 𝐶 doesn’t touch [𝑎, 𝑏]. By continuity, 𝑁 (𝐶, 𝑎) = 𝑁 (𝐶, 𝑏). Thus
𝑁 ( 𝑓 (𝐶), 0) is even. By Theorem 5.12,

√
(𝑧 − 𝑎)(𝑧 − 𝑏) is holomorphic on 𝐺5.

𝐺5

𝐶𝜖1𝑥−1
𝑧+
𝑧−

Fig. 5.7 Computing
√
𝑧2 − 1 on opposite sides of [−1, 1]

For example, consider
√
𝑧2 − 1 on 𝐺5. Let 𝑥 be in (−1, 1), and look at circle

𝐶 (1, 1 − 𝑥) with center 1 and radius 1 − 𝑥 as in Figure 5.7. Let 𝜖 be a small positive
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number, and let 𝑧± be on 𝐶 (1, 1− 𝑥) with 𝑧+ − 𝑧− = 2𝑖𝜖 . By the same logic as for
√
𝑧,√

𝑧2
+ − 1√
𝑧2
− − 1

= exp
(
1
2

∫
𝐶

2𝑧 𝑑𝑧
𝑧2 − 1

)
= exp

(
1
2

∫
𝐶

𝑑𝑧

𝑧 − 1
+ 1

2

∫
𝐶

𝑑𝑧

𝑧 + 1

)
,

over any contour 𝐶 starting at 𝑧− and ending at 𝑧+ in 𝐺5. Let 𝐶𝜖 be the contour in
Figure 5.7; if we use 𝐶𝜖 in the exponent, then 𝐶0 = 𝐶 (1, 1 − 𝑥), and we obtain

lim
𝜖→0

√
𝑧2
+ − 1√
𝑧2
− − 1

= exp(𝜋𝑖𝑁 (𝐶0, 1) + 𝜋𝑖𝑁 (𝐶0,−1)) = exp(𝜋𝑖(1 + 0)) = −1.

Thus the values of
√
𝑧2 − 1 are opposites across the cut [−1, 1].

The same logic shows
√

sin 𝜋𝑧 is holomorphic on 𝐺6 (Figure 5.8). Let 𝑓 (𝑧) =
sin 𝜋𝑧. Then 𝑓 (𝑧) = 0 if and only if 𝑧 is an integer. Let 𝐶 be any closed contour in C
not passing through any integer. Since 𝐶 is contained in 𝐷 (0, 𝑅) for 𝑅 large enough,
𝐶 winds only around finitely many integers.

𝐺6

. . . . . .
−2 −1 0 1 2 3

Fig. 5.8
√

sin(𝜋𝑧) is holomorphic on 𝐺6

𝐺7

1

− 1
2 + 𝑖

2
√

3

− 1
2 − 𝑖

2
√

3

Fig. 5.9 3√
𝑧3 − 1 is holomorphic on 𝐺7

In §7.1, we show (see (7.4))
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𝑁 ( 𝑓 (𝐶), 0) = 1
2𝜋𝑖

∫
𝐶

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

1
2𝜋𝑖

∫
𝐶

𝜋 cos 𝜋𝑧
sin 𝜋𝑧

𝑑𝑧 =
∞∑

𝑛=−∞
𝑁 (𝐶, 𝑛). (5.13)

Now, if 𝐶 is in 𝐺6, then 𝐶 does not touch any of the line segments [2𝑛, 2𝑛 + 1], so
by continuity, 𝑁 (𝐶, 2𝑛) = 𝑁 (𝐶, 2𝑛 + 1), for every integer 𝑛. This shows the sum in
(5.13) is even. By Theorem 5.12,

√
sin(𝜋𝑧) is holomorphic on 𝐺6.

The same logic shows 3√
𝑧3 − 1 is holomorphic on 𝐺7 (Figure 5.9).

Exercises





Chapter 6
Cauchy’s Theorems

6.1 The Perimeter of a Rectangle

We start with the simplest version of Cauchy’s theorem.

6.1. Cauchy’s Theorem for the Perimeter of a Rectangle

Suppose 𝑓 (𝑧) is holomorphic in an open set containing a rectangle 𝑅, and
let 𝐶 be the perimeter of 𝑅. Then∫

𝐶
𝑓 (𝑧) 𝑑𝑧 = 0.

Proof Let 𝐶 be the perimeter of 𝑅 and let

𝐼 =
∫
𝐶

𝑓 (𝑧) 𝑑𝑧.

Our goal is to show 𝐼 = 0.
Divide 𝑅 into four sub-rectangles 𝑅′, 𝑅′′, 𝑅′′′, 𝑅′′′′, let 𝐶 ′, 𝐶 ′′, 𝐶 ′′′, 𝐶 ′′′′ be the

perimeters of 𝑅′, 𝑅′′, 𝑅′′′, 𝑅′′′′, and let 𝐼 ′, 𝐼 ′′, 𝐼 ′′′, 𝐼 ′′′′ be the integrals over 𝐶 ′, 𝐶 ′′,
𝐶 ′′′, 𝐶 ′′′′ respectively. Since the inside paths are traversed twice, their contributions
to the integrals cancel, and (Figure 6.1)

𝐼 = 𝐼 ′ + 𝐼 ′′ + 𝐼 ′′′ + 𝐼 ′′′′.

By the triangle inequality,

|𝐼 | ≤ |𝐼 ′ | + |𝐼 ′′ | + |𝐼 ′′′ | + |𝐼 ′′′′ |,

109
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Fig. 6.1 A rectangle 𝑅 divided into four rectangles

so at least one of the numbers |𝐼 ′ |, |𝐼 ′′ |, |𝐼 ′′′ |, |𝐼 ′′′′ | is not less than |𝐼 |/4. In other
words, for at least one of the four sub-rectangles, call it 𝑅1 with perimeter 𝐶1 and
corresponding integral 𝐼1, we have

|𝐼1 | ≥
1
4
|𝐼 | .

Now divide the sub-rectangle 𝑅1 into four sub-sub-rectangles, and repeat the
same logic: For at least one sub-sub-rectangle, call it 𝑅2 with perimeter 𝐶2 and
corresponding integral 𝐼2, we have

|𝐼2 | ≥
1
4
|𝐼1 | , so |𝐼2 | ≥

1
42 |𝐼 | .

Repeating this process indefinitely, we have rectangles 𝑅 ⊃ 𝑅1 ⊃ 𝑅2 ⊃ 𝑅3 ⊃ . . . ,
with perimeters 𝐶1, 𝐶2, 𝐶3, . . . , and corresponding integrals

𝐼𝑛 =
∫
𝐶𝑛

𝑓 (𝑧) 𝑑𝑧,

satisfying

|𝐼𝑛 | ≥
1
4𝑛

|𝐼 | , 𝑛 ≥ 1. (6.1)

Let 𝐿 and 𝑑 be the lengths of the perimeter 𝐶 and diagonal of 𝑅, and let 𝐿𝑛 and
𝑑𝑛 be the lengths of the perimeter 𝐶𝑛 and diagonal of 𝑅𝑛. Then

𝐿𝑛 = 2−𝑛𝐿 and 𝑑𝑛 = 2−𝑛𝑑, 𝑛 ≥ 1. (6.2)

Since the coordinates of the lower left corners of 𝑅𝑛 are increasing with 𝑛, and
the coordinates of the upper right corners of 𝑅𝑛 are decreasing with 𝑛, it follows the
rectangles 𝑅𝑛 and their perimeters 𝐶𝑛 converge to a specific point 𝑎 in 𝑅, as 𝑛 → ∞.
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Since 1 and 𝑧 have holomorphic anti-derivatives 𝑧 and 𝑧2/2, the contour integrals
of 1 and 𝑧 over the closed contours 𝐶𝑛 are zero, hence

𝐼𝑛 =
∫
𝐶𝑛

𝑓 (𝑧) 𝑑𝑧 =
∫
𝐶𝑛

[ 𝑓 (𝑧) − 𝑓 (𝑎) − 𝑓 ′(𝑎)(𝑧 − 𝑎)] 𝑑𝑧, 𝑛 ≥ 1.

Let 𝜖𝑛 be the maximum value of the error���� 𝑓 (𝑧) − 𝑓 (𝑎)
𝑧 − 𝑎

− 𝑓 ′(𝑎)
���� (6.3)

as 𝑧 varies over the perimeter 𝐶𝑛. Since 𝐶𝑛 converges to 𝑎, by definition of the
derivative 𝑓 ′(𝑎), the error converges to zero,

𝜖𝑛 → 0 as 𝑛 → ∞.

Since (6.3) implies

| 𝑓 (𝑧) − 𝑓 (𝑎) − 𝑓 ′(𝑎) (𝑧 − 𝑎) | ≤ 𝜖𝑛 |𝑧 − 𝑎 |

for 𝑧 on 𝐶𝑛, we have by the triangle inequality for integrals (Theorem 5.4),

|𝐼𝑛 | ≤
∫
𝐶𝑛

| 𝑓 (𝑧) − 𝑓 (𝑎) − 𝑓 ′(𝑎) (𝑧 − 𝑎) | |𝑑𝑧 | ≤ 𝜖𝑛

∫
𝐶𝑛

|𝑧 − 𝑎 | |𝑑𝑧 |.

But |𝑧 − 𝑎 | ≤ 𝑑𝑛 on 𝐶𝑛, and the length of 𝐶𝑛 is 𝐿𝑛, so from (6.2) and Theorem 5.4,

|𝐼𝑛 | ≤ 𝜖𝑛𝐿𝑛𝑑𝑛 = 4−𝑛𝜖𝑛𝐿𝑑.

From (6.1), we get
4−𝑛 |𝐼 | ≤ |𝐼𝑛 | ≤ 4−𝑛𝜖𝑛𝐿𝑑

which implies
|𝐼 | ≤ 𝜖𝑛𝐿𝑑.

Since this is true for all 𝑛 ≥ 1 and 𝜖𝑛 → 0, we conclude 𝐼 = 0. □

If 𝑅 is a rectangle and 𝑎 is a point inside 𝑅, then 𝑅 with 𝑎 removed is a punctured
rectangle. More generally, a punctured rectangle is a rectangle with several puncture
points removed.
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1/𝑛

1/𝑛𝐶𝑛

𝑧
𝑎

Fig. 6.2 A punctured rectangle 𝑅′ divided into nine rectangles

6.2. Cauchy’s Theorem for the Perimeter of a Punctured Rectangle

Let 𝑅′ be a rectangle punctured by finitely many points 𝑎. Suppose 𝑓 (𝑧) is
holomorphic in 𝑅′, and suppose

lim
𝑧→𝑎

(𝑧 − 𝑎) 𝑓 (𝑧) = 0 (6.4)

at each puncture point 𝑎. If 𝐶 is the perimeter of 𝑅′, then∫
𝐶

𝑓 (𝑧) 𝑑𝑧 = 0.

Proof First, by dividing 𝑅′ into sub-rectangles, we may assume there is only one
puncture 𝑎. Next, divide 𝑅′ into nine sub-rectangles, with 𝑎 at the center of one of
them, as in Figure 6.2, in such a way that the sub-rectangle 𝑅𝑛 centered at 𝑎 is a
square with side length 1/𝑛. If the perimeter of 𝑅𝑛 is𝐶𝑛, then we can apply Theorem
6.1 to every sub-rectangle but 𝑅𝑛, obtaining

𝐼 =
∫
𝐶

𝑓 (𝑧) 𝑑𝑧 =
∫
𝐶𝑛

𝑓 (𝑧) 𝑑𝑧.

If we let 𝜖𝑛 be the maximum value of |𝑧−𝑎 | | 𝑓 (𝑧) | on𝐶𝑛, then by assumption 𝜖𝑛 → 0
as 𝑛 → ∞. Then by the triangle inequality for integrals (Theorem 5.4),����∫

𝐶𝑛

𝑓 (𝑧) 𝑑𝑧
���� = ����∫

𝐶𝑛

(𝑧 − 𝑎) 𝑓 (𝑧) 𝑑𝑧

𝑧 − 𝑎

���� ≤ 𝜖𝑛

∫
𝐶𝑛

|𝑑𝑧 |
|𝑧 − 𝑎 | .

If 𝑧 is in 𝐶𝑛, then |𝑧 − 𝑎 | ≥ 1/2𝑛. Since the length of 𝐶𝑛 is 4/𝑛,
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𝐶𝑛

|𝑑𝑧 |
|𝑧 − 𝑎 | ≤ 8,

to conclude
|𝐼 | =

����∫
𝐶𝑛

𝑓 (𝑧) 𝑑𝑧
���� ≤ 8𝜖𝑛.

Since 𝜖𝑛 → 0, this shows 𝐼 = 0. □

Now we derive

6.3. Cauchy’s Integral Formula for the Perimeter of a Rectangle

Suppose 𝑓 (𝑧) is holomorphic in an open set containing a rectangle 𝑅, and
let 𝐶 be the perimeter of 𝑅. If 𝑧 is inside 𝑅, then

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝐶

𝑓 (𝑤)
𝑤 − 𝑧

𝑑𝑤. (6.5)

Notice what Cauchy’s integral formula says: If you know 𝑓 (𝑧) along the perimeter,
then you know 𝑓 (𝑎) at any point 𝑎 inside!

Proof Fix 𝑧 inside 𝑅 and define

𝑔(𝑤) =

𝑓 (𝑤) − 𝑓 (𝑧)

𝑤 − 𝑧
, 𝑤 ≠ 𝑧,

𝑓 ′(𝑧), 𝑤 = 𝑧.

Then 𝑔(𝑤) is holomorphic at all points of 𝑅, except possibly at 𝑧, where it satisfies

lim
𝑤→𝑧

(𝑤 − 𝑧)𝑔(𝑤) = 0.

Applying Theorem 6.2 to 𝑔(𝑤), we obtain∫
𝐶

𝑓 (𝑤) − 𝑓 (𝑧)
𝑤 − 𝑧

𝑑𝑤 = 0.

But a rectangle winds once around its center, so 𝑁 (𝐶, 𝑧) = 1. Rewriting this, using
𝑁 (𝐶, 𝑧) = 1, yields (6.5). □

As a consequence,
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6.4. Holomorphic Functions are Infinitely Differentiable

Suppose 𝑓 (𝑧) is holomorphic in an open set 𝐺. Then all derivatives 𝑓 (𝑛) (𝑧),
𝑛 ≥ 2, exist at all points of 𝐺.

Proof Fix a point 𝑐 in 𝐺 and let 𝑅 be a small rectangle centered at 𝑐 completely
contained in 𝐺. Then by (6.5) and Theorem 5.5, we may differentiate under the
integral arbitrarily many times. Thus 𝑓 (𝑛) (𝑧) exist at all points 𝑧 inside 𝑅, for all
𝑛 ≥ 2. Since 𝑐 was any point in 𝐺, the result follows. □

6.2 The Disk and the Rectangle

Now we show what was true for the perimeter of a rectangle is true for any closed
contour in a rectangle, and in a disk.

6.5. Cauchy’s Theorem in a Disk and in a Rectangle

Suppose 𝑓 (𝑧) is holomorphic in an open disk 𝐺 or in an open rectangle 𝐺.
Then ∫

𝐶
𝑓 (𝑧) 𝑑𝑧 = 0,

for every closed contour 𝐶 in 𝐺.

Proof The proof is similar to that of Theorem 5.3, except here we can only use
contour segments [𝑎, 𝑧] that are vertical or horizontal. Because of this, here we must
appeal to the CR equation.

Suppose 𝑐 is the center of 𝐺. Given 𝑧 in 𝐺, let

𝐹 (𝑧) =
∫
𝐶

𝑓 (𝑤) 𝑑𝑤,

where 𝐶 is the contour [𝑐, 𝑏] + [𝑏, 𝑧] (Figure 6.3). Then, for ℎ real, 𝐹 (𝑧 + ℎ) is the
contour integral along [𝑐, 𝑏] + [𝑏, 𝑧+ ℎ]. Thus 𝐹 (𝑧+ ℎ) −𝐹 (𝑧) is the contour integral
of 𝑓 (𝑤) over [𝑧, 𝑧 + ℎ],

𝐹 (𝑧 + ℎ) − 𝐹 (𝑧) = ℎ ·
∫ 1

0
𝑓 (𝑧 + 𝑡ℎ) 𝑑𝑡. (6.6)

Since ℎ is real, by Theorem 4.5, 𝜕 𝑓 /𝜕𝑥 exists at 𝑧 and equals 𝑓 (𝑧).
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𝑧

𝑐

𝑏

𝑑

Fig. 6.3 Proof of Cauchy’s theorem in a disk

𝑧

𝑐

Fig. 6.4 Proof of Cauchy’s theorem in a punctured disk

By Theorem 6.1, we may replace the contour in the definition of 𝐹 (𝑧) by [𝑐, 𝑑] +
[𝑑, 𝑎] (Figure 6.3). Then, for ℎ imaginary, 𝐹 (𝑧 + ℎ) is the contour integral along
[𝑐, 𝑑] + [𝑑, 𝑧+ ℎ]. Thus 𝐹 (𝑧+ ℎ) −𝐹 (𝑧) is the integral over [𝑧, 𝑧+ ℎ], and (6.6) holds.
Since ℎ is imaginary, by Theorem 4.5, (1/𝑖)𝜕 𝑓 /𝜕𝑦 exists at 𝑧 and equals 𝑓 (𝑧). By
Theorem 4.10, 𝐹 ′(𝑧) exists and equals 𝑓 (𝑧). By Theorem 5.2, the integral of 𝑓 (𝑧)
over any closed contour is zero. □

If 𝐷 is a disk and 𝑎 is a point inside 𝐷, then 𝐷 with the point 𝑎 removed is a
punctured disk. More generally, a punctured disk is a disk with several puncture
points removed.
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6.6. Cauchy’s Theorem in a Punctured Disk and in a Punctured Rect-
angle

Let 𝐺 ′ be an open disk or open rectangle punctured by finitely many points
𝑎. Suppose 𝑓 (𝑧) is holomorphic in 𝐺 ′, and suppose

lim
𝑧→𝑎

(𝑧 − 𝑎) 𝑓 (𝑧) = 0, (6.7)

at each puncture point 𝑎. Then∫
𝐶

𝑓 (𝑧) 𝑑𝑧 = 0,

for every closed contour 𝐶 in 𝐺 ′.

Proof Suppose first the center 𝑐 is not a puncture point. This time let

𝐹 (𝑧) =
∫
𝐶

𝑓 (𝑤) 𝑑𝑤,

where𝐶 is either of the four-segment contours shown in Figure 6.4. By Theorem 6.2,
𝐹 (𝑧) does not depend on the choice of the middle segments, as long as the contours
do not pass through any of the puncture points. By Theorem 6.2, we may use either
of the two four-segment contours to define 𝐹 (𝑧).

If the center 𝑐 is a puncture point, then start instead at a non-puncture point 𝑐′
near 𝑐, and draw the same contours. The rest of the proof is as in Theorem 6.5. □

Now we derive

6.7. Cauchy’s Integral Formula in a Disk and in a Rectangle

Suppose 𝑓 (𝑧) is holomorphic in an open disk 𝐺 or open rectangle 𝐺, and let
𝑧 be a point in 𝐺. If 𝐶 is a closed contour in 𝐺 not passing through 𝑧, and
𝑛 = 𝑁 (𝐶, 𝑧),

𝑛 · 𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝐶

𝑓 (𝑤)
𝑤 − 𝑧

𝑑𝑤. (6.8)

Proof Define

𝑔(𝑤) =

𝑓 (𝑤) − 𝑓 (𝑧)

𝑤 − 𝑧
, 𝑤 ≠ 𝑧,

𝑓 ′(𝑧), 𝑤 = 𝑧.

Then 𝑔(𝑤) is holomorphic at all points of 𝐺, except possibly at 𝑧, where it satisfies
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lim
𝑤→𝑧

(𝑤 − 𝑧)𝑔(𝑤) = 0.

Applying Theorem 6.6 to 𝑔(𝑤), we obtain∫
𝐶

𝑓 (𝑤) − 𝑓 (𝑧)
𝑤 − 𝑧

𝑑𝑤 = 0.

Rewriting this, using 𝑛 = 𝑁 (𝐶, 𝑧), yields (6.8). □

6.8. Cauchy’s Integral Formula in a Punctured Disk and in a Punctured
Rectangle

Let 𝐺 ′ be an open disk or open rectangle punctured by finitely many points
𝑎. Suppose 𝑓 (𝑧) is holomorphic in 𝐺 ′, and suppose

lim
𝑧→𝑎

(𝑧 − 𝑎) 𝑓 (𝑧) = 0,

at each puncture point 𝑎. Let 𝑧 be a point in 𝐺 ′, let 𝐶 be a closed contour in
𝐺 ′ not passing through 𝑧, and let 𝑛 = 𝑁 (𝐶, 𝑧). Then

𝑛 · 𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝐶

𝑓 (𝑤)
𝑤 − 𝑧

𝑑𝑤. (6.9)

The proof is identical to the previous version, except we use Cauchy’s theorem
in a punctured disk and in a punctured rectangle. We now apply Cauchy’s integral
formula to the case when 𝐶 is a circle.

6.9. Mean Value Property

Let 𝑓 (𝑧) be holomorphic on the open disk |𝑧 − 𝑐 | < 𝑅. Then 𝑓 (𝑐) is the
average of 𝑓 (𝑧) over 𝐶 (𝑐, 𝑟) for any 𝑟 < 𝑅,

𝑓 (𝑐) = 1
2𝜋

∫ 2𝜋

0
𝑓 (𝑐 + 𝑟𝑒𝑖 𝜃 ) 𝑑𝜃.

Proof Apply Cauchy’s integral formula with 𝐶 = 𝐶 (𝑐, 𝑟). Then 𝑛 = 𝑁 (𝐶, 𝑐) = 1.
On 𝐶, 𝑧 = 𝑐 + 𝑟𝑒𝑖 𝜃 , 0 ≤ 𝜃 ≤ 2𝜋. Inserting this into (6.8) yields the result. □

Let 𝑓 (𝑧) be holomorphic on a disk 𝐷 centered at 𝑐, and let 𝐶 = 𝐶 (𝑐, 𝑟) lie in 𝐷.
If |𝑧 − 𝑐 | < 𝑟 , then 𝑧 is inside 𝐶, so 𝑁 (𝐶, 𝑧) = 1. By (6.8),

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝐶

𝑓 (𝑤)
𝑤 − 𝑧

𝑑𝑤, |𝑧 − 𝑐 | < 𝑟.
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By Theorem 5.5,

6.10. Cauchy’s Integral Formula for Derivatives

Let 𝑓 (𝑧) be holomorphic on a disk 𝐷. If 𝑟 > 0 is such that 𝐶 (𝑐, 𝑟) lies in 𝐷,
the derivatives are given by

𝑓 (𝑛) (𝑧) = 𝑛!
2𝜋𝑖

∫
𝐶 (𝑐,𝑟 )

𝑓 (𝑤)
(𝑤 − 𝑧)𝑛+1 𝑑𝑤, (6.10)

for |𝑧 − 𝑐 | < 𝑟 and 𝑛 ≥ 0.

This implies

6.11. Cauchy’s Estimates

Let 𝑓 (𝑧) be holomorphic on the disk 𝐷 (𝑐, 𝑅) and let 𝑟 < 𝑅. If | 𝑓 (𝑧) | ≤ 𝑀
on 𝐶 (𝑐, 𝑟), then

| 𝑓 (𝑛) (𝑐) | ≤ 𝑛!𝑀
𝑟𝑛

, 𝑛 ≥ 0.

Proof Using Theorem 6.10 with 𝑎 = 𝑐, and the triangle inequality for integrals
(Theorem 5.4),

| 𝑓 (𝑛) (𝑐) | =
���� 𝑛!
2𝜋𝑖

∫
𝐶 (𝑐,𝑟 )

𝑓 (𝑧)
(𝑧 − 𝑐)𝑛+1 𝑑𝑧

���� ≤ 𝑛!
2𝜋

∫
𝐶 (𝑐,𝑟 )

| 𝑓 (𝑧) |
|𝑧 − 𝑐 |𝑛+1 |𝑑𝑧 |

=
𝑛!
2𝜋

∫
𝐶 (𝑐,𝑟 )

| 𝑓 (𝑧) |
𝑟𝑛+1 |𝑑𝑧 | ≤ 𝑛!

2𝜋𝑟𝑛+1 · 2𝜋𝑟 · 𝑀 =
𝑛!𝑀
𝑟𝑛

.

As a corollary, we have

6.12. Liouville’s theorem

A bounded entire function is constant.

Proof Assume | 𝑓 (𝑧) | ≤ 𝑀 on all of C. By Cauchy’s estimates,

| 𝑓 ′(𝑐) | ≤ 𝑀

𝑟

for all 𝑟 > 0. Letting 𝑟 → ∞ yields 𝑓 ′(𝑐) = 0. Since 𝑐 is any point, we conclude
𝑓 ′(𝑧) = 0 on all of C, so 𝑓 (𝑧) is constant. □
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Liouville’s theorem leads to a proof of the

6.13. Fundamental Theorem of Algebra

If 𝑓 (𝑧) is a nonconstant polynomial, then 𝑓 (𝑎) = 0 for some complex number
𝑎. Consequently, a degree 𝑛 polynomial has 𝑛 complex roots.

Proof Suppose not. Then 1/ 𝑓 (𝑧) is analytic on all of C, hence entire. Since

𝑓 (𝑧) = 𝑧𝑛 + 𝑎1𝑧
𝑛−1 + 𝑎2𝑧

𝑛−2 + · · · + 𝑎𝑛 = 𝑧𝑛
(
1 + 𝑎1

𝑧
+ 𝑎2

𝑧2 + · · · + 𝑎𝑛
𝑧𝑛

)
,

we have 𝑓 (𝑧) → ∞ as 𝑧 → ∞. Hence 1/ 𝑓 (𝑧) is a bounded entire function, hence
constant, which is a contradiction. □

From §4.4, a power series is a holomorphic function, on any disk of convergence.
We now prove the converse.

Suppose 𝑓 (𝑧) is holomorphic on an open disk 𝐷 centered at 𝑐. By Theorem 6.4,
we know all derivatives 𝑓 (𝑛) (𝑧) exist in 𝐷. Hence it is meaningful to write the Taylor
series

𝑓 (𝑐) + 𝑓 ′(𝑐) (𝑧 − 𝑐) + 1
2!

𝑓 ′′(𝑐)(𝑧 − 𝑐)2 + 1
3!

𝑓 ′′′(𝑐)(𝑧 − 𝑐)3 + . . .

at 𝑐. It is natural to ask where is this series convergent, and where does it sum to
𝑓 (𝑧)? We show that this is so at every 𝑧 in 𝐷.

Choose 𝑟 > 0 such that the circle 𝐶 = 𝐶 (𝑐, 𝑟) lies in 𝐷, and let

𝑎𝑛 =
1
𝑛!

𝑓 (𝑛) (𝑐) = 1
2𝜋𝑖

∫
𝐶

𝑓 (𝑤)
(𝑤 − 𝑐)𝑛+1 𝑑𝑤.

Given |𝑧 − 𝑐 | < 𝑟 , let 𝛿 be the minimum distance of 𝑧 to 𝐶. Then

|𝑤 − 𝑧 | ≥ 𝛿, 𝑤 in 𝐶.

Let 𝑀 be the maximum value of | 𝑓 (𝑧) | on 𝐶.
Now write

1
𝑤 − 𝑧

=
1

(𝑤 − 𝑐) − (𝑧 − 𝑐) =
1

𝑤 − 𝑐
· 1

1 − (𝑧 − 𝑐)/(𝑤 − 𝑐) .

If 𝑡𝑛 (𝑧) is the 𝑛-th tail of the geometric series, then replacing 𝑧 by (𝑧 − 𝑐)/(𝑤 − 𝑐)
in (3.7), we obtain

1
𝑤 − 𝑧

=
1

𝑤 − 𝑐

(
𝑛∑

𝑘=0

( 𝑧 − 𝑐

𝑤 − 𝑐

) 𝑘
+ 𝑤 − 𝑐

𝑤 − 𝑧

( 𝑧 − 𝑐

𝑤 − 𝑐

)𝑛+1
)
,
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𝑟

𝑐

𝑤

𝑧

Fig. 6.5 A holomorphic function may be expanded into powers of (𝑧 − 𝑐) at 𝑐

so
1

𝑤 − 𝑧
=

𝑛∑
𝑘=0

(𝑧 − 𝑐)𝑘
(𝑤 − 𝑐)𝑘+1 + 1

𝑤 − 𝑧

( 𝑧 − 𝑐

𝑤 − 𝑐

)𝑛+1
. (6.11)

Multiply both sides of (6.11) by 𝑓 (𝑤) and integrate over 𝑤 in 𝐶. By (6.10), we
obtain

𝑓 (𝑧) =
𝑛∑

𝑛=0
𝑎𝑘 (𝑧 − 𝑐)𝑘 + 1

2𝜋𝑖

∫
𝐶

𝑓 (𝑤)
𝑤 − 𝑧

( 𝑧 − 𝑐

𝑤 − 𝑐

)𝑛+1
𝑑𝑤.

Since |𝑤 − 𝑐 | = 𝑟 , by the triangle inequality for integrals,����� 𝑓 (𝑧) − 𝑛∑
𝑛=0

𝑎𝑘 (𝑧 − 𝑐)𝑘
����� ≤ 𝑀𝑟

𝛿

(
|𝑧 − 𝑐 |

𝑟

)𝑛+1
.

Since |𝑧 − 𝑐 |/𝑟 < 1, this goes to zero as 𝑛 → ∞. Thus

𝑓 (𝑧) =
∞∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑐)𝑛

for 𝑧 in 𝐷 (𝑐, 𝑟). Since 𝑟 > 0 is any radius for which 𝐶 (𝑐, 𝑟) lies in 𝐷, we established
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6.14. Holomorphic Functions are Power Series

If 𝑓 (𝑧) is holomorphic on a disk 𝐷 centered at 𝑐, then 𝑓 (𝑧) equals its Taylor
series,

𝑓 (𝑧) = 𝑓 (𝑐) + 𝑓 ′(𝑐)(𝑧 − 𝑐) + 1
2!

𝑓 ′′(𝑐)(𝑧 − 𝑐)2 + 1
3!

𝑓 ′′′(𝑐) (𝑧 − 𝑐)3 + . . .

for 𝑧 in 𝐷.

From this, we see the disk of convergence of the Taylor series of a holomorphic
function extends to the nearest singularity. For example, the function

𝜏(𝑧) = 𝑧

𝑒𝑧 − 1

is holomorphic at the origin, since (Theorem 6.17)

lim
𝑧→0

𝑧

𝑒𝑧 − 1
= 1.

Since 𝑒2𝜋𝑖 = 1, 2𝜋𝑖 is the singularity of 𝜏(𝑧) nearest to the origin. Hence 𝜏(𝑧) may
be expanded into a complex power series in 𝐷 (0, 2𝜋),

𝜏(𝑧) = 1 + 𝐵1𝑧 + 𝐵2
𝑧2

2!
+ 𝐵3

𝑧3

3!
+ . . . , |𝑧 | < 2𝜋.

This is the Bernoulli series and the coefficients 𝐵𝑛 are the Bernoulli numbers.
Also, from the above derivation, we obtain an explicit formula for 𝑁-th tail of the

complex Taylor series,

𝑡𝑛 (𝑧) =
(

1
2𝜋𝑖

∫
𝐶

𝑓 (𝑤)
(𝑤 − 𝑧) (𝑤 − 𝑐)𝑛+1 𝑑𝑤

)
(𝑧 − 𝑐)𝑛+1.

Now we use Theorem 6.14 to derive a converse of Cauchy’s theorem.

6.15. Morera’s Theorem

Suppose 𝑓 (𝑧) is a continuous function on an open set 𝐺, and suppose∫
𝐶

𝑓 (𝑧) 𝑑𝑧 = 0

for every closed contour 𝐶 in 𝐺. Then 𝑓 (𝑧) is holomorphic in 𝐺.
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Proof By Theorem 5.3, 𝑓 (𝑧) has a holomorphic anti-derivative 𝐹 (𝑧). By Theorem
6.14, 𝐹 ′(𝑧) = 𝑓 (𝑧) is holomorphic. □

6.3 Zeros and Poles

We start with zeros of a holomorphic function, then study poles of a holomorphic
function.

A zero of a holomorphic function is a point 𝑐 with 𝑓 (𝑐) = 0. A zero 𝑐 is isolated
if there is a disk 𝐷 centered at 𝑐 with 𝑓 (𝑧) ≠ 0 on 𝐷 − 𝑐.

6.16. Theorem

Let 𝑓 (𝑧) be holomorphic on an open set 𝐺 and let 𝑐 be a zero of 𝑓 (𝑧). Then
there are two possibilities. Either (1) 𝑐 is an isolated zero, and there is a
unique 𝑛 ≥ 1 such that

𝑓 (𝑧)
(𝑧 − 𝑐)𝑛

is nonzero and holomorphic at 𝑎, or (2) 𝑓 (𝑧) = 0 on the connected component
𝐺1 of 𝐺 containing 𝑐.

Proof This follows from Theorem 6.14. We have two possibilities. Either all deriva-
tives 𝑓 (𝑛) (𝑐) = 0, 𝑛 ≥ 0, or there is at least one derivative that is not zero at 𝑐,
𝑓 (𝑛) (𝑐) ≠ 0.

Let 𝐺 ′
1 be the set of points 𝑎 in 𝐺1 such that all derivatives are zero, 𝑓 (𝑛) (𝑎) = 0,

𝑛 ≥ 0. By Theorem 6.14, if 𝑎 is in 𝐺 ′
1, then 𝑓 (𝑛) (𝑧) = 0, 𝑛 ≥ 0, for all 𝑧 in a disk

about 𝑎. Hence 𝐺 ′
1 is open. On the other hand, if 𝑎 is not in 𝐺 ′

1, then, for some 𝑛,
𝑓 (𝑛) (𝑎) ≠ 0, which implies 𝑓 (𝑛) (𝑧) ≠ 0 for 𝑧 near 𝑎, so 𝐺 ′′

1 = 𝐺1 − 𝐺 ′
1 is also

open. But 𝐺1 is connected, so cannot be written as a disjoint union of two open sets
𝐺 ′

1 ∪ 𝐺 ′′
1 (Theorem 4.2). Hence one of 𝐺 ′

1 or 𝐺 ′′
1 is empty.

If 𝐺 ′
1 is empty, for some 𝑛, 𝑓 (𝑛) (𝑐) ≠ 0. If we let 𝑁 be the least such 𝑛, then

𝑓 (𝑧) = 1
𝑁!

𝑓 (𝑁 ) (𝑐) (𝑧 − 𝑐)𝑁 + 1
(𝑁 + 1)! 𝑓

(𝑁+1) (𝑐)(𝑧 − 𝑐)𝑁+1 + . . .

= (𝑧 − 𝑐)𝑁
(

1
𝑁!

𝑓 (𝑁 ) (𝑐) + 1
(𝑁 + 1)! 𝑓

(𝑁+1) (𝑐)(𝑧 − 𝑐) + . . .

)
,

which implies 𝑓 (𝑧)/(𝑧 − 𝑐)𝑁 is nonzero and holomorphic for 𝑧 near 𝑐, so 𝑐 is an
isolated zero. If 𝐺 ′′

1 is empty, then 𝑓 (𝑧) = 0 on 𝐺1. □

This theorem shows that, near an isolated zero 𝑐, a holomorphic function looks
like (𝑧 − 𝑐)𝑛 for a unique 𝑛 ≥ 1. This integer 𝑛 ≥ 1 is the order of the zero 𝑐. When
𝑛 = 1, the zero 𝑐 is simple.
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Now we look at points where 𝑓 (𝑧) is not defined. An isolated singularity is1 a
point 𝑐 such that 𝑓 (𝑧) is defined and holomorphic in a punctured disk 𝐷− 𝑐 centered
about 𝑐. For example, 0 is an isolated singularity for

𝑓 (𝑧) = 1
𝑧3 .

At an isolated singularity, there are three possibilities:

• The point 𝑐 is a removable singularity if

lim
𝑧→𝑐

(𝑧 − 𝑐) 𝑓 (𝑧) = 0.

• The point 𝑐 is a pole if lim𝑧→𝑐 | 𝑓 (𝑧) | = ∞.
• The point 𝑐 is an essential singularity if otherwise.

Note the condition for a removable singularity is exactly what we had for puncture
points in Cauchy’s theorem and Cauchy’s integral formula.

For example, 0 is a pole for 𝑓 (𝑧) = 1/𝑧3, and 0 is an essential singularity for
𝑓 (𝑧) = 𝑒1/𝑧 . The following theorem shows removable singularities are no cause for
concern.

6.17. Theorem

Let 𝑐 be a removable singularity for 𝑓 (𝑧) in the disk 𝐷 = 𝐷 (𝑐, 𝑅). Then
𝑓 (𝑧) is well-defined and holomorphic at 𝑐.

Proof By assumption, 𝑐 is a puncture point for 𝑓 (𝑧), so Cauchy’s integral formula
in a punctured disk (Theorem 6.8) applies. Hence

𝑓 (𝑎) = 1
2𝜋𝑖

∫
𝐶 (𝑐,𝑟 )

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧, 𝑎 ≠ 𝑐.

But the right side is a holomorphic function also at 𝑎 = 𝑐 (Theorem 5.5), hence so
is 𝑓 (𝑧). □

Now we examine non-removable singularities. Note if 𝑓 (𝑧) is bounded near an
isolated singularity 𝑐, then 𝑐 is a removable singularity. Hence, near a non-removable
singularity, a holomorphic function is unbounded. Then there are two possibilities:
either 𝑐 is a pole, or 𝑐 is an essential singularity.

1 According to this definition, 𝑓 (𝑧) could be holomorphic at 𝑐.
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6.18. Theorem

Let 𝑐 be a pole of a holomorphic function 𝑓 (𝑧) in a disk 𝐷 = 𝐷 (𝑐, 𝑅). Then
there is a unique 𝑛 ≥ 1 such that

(𝑧 − 𝑐)𝑛 𝑓 (𝑧)

is a nonzero and holomorphic at 𝑐.

Proof If 𝑐 is a pole of 𝑓 (𝑧), then 𝑐 is a zero of 1/ 𝑓 (𝑧), so this follows from Theorem
6.16.

The integer 𝑛 is the order of the pole 𝑐. When 𝑛 = 1, the pole 𝑐 is simple.
If we write the Taylor series of (𝑧 − 𝑐)𝑛 𝑓 (𝑧) at 𝑐,

(𝑧 − 𝑐)𝑛 𝑓 (𝑧) = 𝑎0 + 𝑎1 (𝑧 − 𝑐) + 𝑎2 (𝑧 − 𝑐)2 + . . . ,

we obtain the Laurent series of 𝑓 (𝑧) at 𝑎,

𝑓 (𝑧) = 1
(𝑧 − 𝑐)𝑛

(
𝑎0 + 𝑎1 (𝑧 − 𝑐) + 𝑎2 (𝑧 − 𝑐)2 + . . .

)
.

For example, for the function

𝑓 (𝑧) = 𝑒𝑧

𝑧𝑛
, 𝑛 = 0 ± 1,±2, . . .

the origin 𝑐 = 0 is

• a pole of order 𝑛 when 𝑛 ≥ 1,
• a zero of order −𝑛 when 𝑛 ≤ −1, and
• neither when 𝑛 = 0.

In this case the Laurent series at 0 is

𝑒𝑧

𝑧𝑛
=

1
𝑧𝑛

+ 1
𝑧𝑛−1 + 1

2!𝑧𝑛−2 + 1
3!𝑧𝑛−3 + . . .

6.4 The General Theorems

Now we go from a disk to a general open set. Let 𝐺 be an open set, let 𝐶 be a closed
contour in 𝐺, and let 𝑎 be a point not in 𝐺.

In previous sections, we measured how𝐶 wound around the point 𝑎 by integrating
1/(𝑧 − 𝑎) over 𝐶, obtaining the winding number 𝑁 (𝐶, 𝑎).

We also studied showed how the vanishing of the winding number over all closed
contours in 𝐺 related to the existence of a branch of log 𝑧 on 𝐺.
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𝐶

𝐺

Fig. 6.6 An open set 𝐺 containing a closed contour 𝐶

Now we consider a more general question. Fix a closed contour 𝐶 in 𝐺. What
conditions should we require on 𝐶 so that∫

𝐶
𝑓 (𝑥) 𝑑𝑧 = 0

for every holomorphic 𝑓 (𝑧) on 𝐺?
Since 1/(𝑧−𝑎) is holomorphic on𝐺 whenever 𝑎 is not in𝐺, a necessary condition

is the vanishing of the winding number

𝑁 (𝐶, 𝑎) = 1
2𝜋𝑖

∫
𝐶

𝑑𝑧

𝑧 − 𝑎
= 0

for all 𝑎 not in 𝐺. The following asserts this condition is sufficient.

6.19. Cauchy’s Theorem

Let 𝐶 be a closed contour lying in an open set 𝐺. If 𝐶 does not wind around
any point not in 𝐺, then ∫

𝐶
𝑓 (𝑧) 𝑑𝑧 = 0,

for every 𝑓 (𝑧) holomorphic on 𝐺.

To rephrase, Cauchy’s theorem is saying: If∫
𝐶

𝑑𝑧

𝑧 − 𝑎
= 0
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for every point 𝑎 not in 𝐺, then ∫
𝐶

𝑓 (𝑧) 𝑑𝑧 = 0

for every holomorphic function 𝑓 (𝑧).
Proof Draw an infinite grid over the whole complex plane of closed squares 𝑄 of
edge-lengths 𝛿 > 0. This divides C into closed squares. For each square 𝑄, let 𝜕𝑄
denote its perimeter, taken as a closed contour in the counter-clockwise direction.
Now let 𝐶𝛿 be the sum of the contours 𝜕𝑄, over all squares 𝑄 contained in 𝐺,

𝐶𝛿 =
∑
𝑄⊂𝐺

𝜕𝑄.

If 𝛿 is small enough, there is at least one 𝑄 completely contained in 𝐺. Let 𝐺 𝛿 be
the interior of the union of these squares 𝑄,

𝐺 𝛿 = interior

( ⋃
𝑄⊂𝐺

𝑄

)
.

Then 𝐺 𝛿 is open and has no point in common with 𝐶𝛿 ; in fact, 𝐶𝛿 is the boundary
of 𝐺 𝛿 . Choose 𝛿 small enough so 𝐶 is contained in 𝐺 𝛿 .

Now pick a point 𝑎 in the inside of one of the squares 𝑄0 completely contained
in 𝐺. Then

1
2𝜋𝑖

∫
𝜕𝑄

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧 =

{
𝑓 (𝑎) 𝑄 = 𝑄0

0 𝑄 ≠ 𝑄0.

It follows
𝑓 (𝑎) = 1

2𝜋𝑖

∫
𝐶𝛿

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧

for all 𝑎 in the insides of the squares 𝑄 completely contained in 𝐺. Since both sides
are continuous functions of 𝑎 on𝐺 𝛿 , this holds for all 𝑎 in𝐺 𝛿 . Needs to be completed
after figure is drawn □

We say an open set 𝐺 is simply connected if every closed contour in 𝐺 does not
wind about any point not in 𝐺. For a simply connected 𝐺, Cauchy’s theorem holds
for any closed contour 𝐶 in 𝐺.

If 𝐺 = 𝐷 (𝑐, 𝑅) − 𝐷 (𝑐, 𝑟), 𝑟 < 𝑅, is the region between two concentric circles,
then 𝐺 is not simply connected, because any circle 𝐶 (𝑐, 𝑡), 𝑟 < 𝑡 < 𝑅, winds about
the center 𝑐, which is not in 𝐺.

Every holomorphic 𝑓 (𝑧) on a simply connected 𝐺 necessarily has a holomorphic
anti-derivative. In particular, if 𝑓 (𝑧) ≠ 0 on such a 𝐺, then 𝑓 ′(𝑧)/ 𝑓 (𝑧) has an
anti-derivative 𝐹 (𝑧). By Theorem 5.10, we have the following.



6.4 The General Theorems 127

6.20. Theorem

Let 𝐺 be simply connected and let 𝑓 (𝑧) ≠ 0 be holomorphic on 𝐺. Then
log( 𝑓 (𝑧)) is holomorphic on 𝐺, and

√
𝑓 (𝑧) is holomorphic on 𝐺.

We say a set 𝐺 is star-shaped if there is a point 𝑎 in 𝐺 such for any 𝑧 in 𝐺, the
line segment [𝑎, 𝑧] lies in 𝐺.

6.21. Theorem

A star-shaped open set 𝐺 is simply connected.

Proof Let 𝑎 in 𝐺 be a point such that [𝑎, 𝑧] lies in 𝐺 for every 𝑧 in 𝐺. Let 𝑏 be
a point not in 𝐺, and let [𝑏,∞) be the segment of the ray emanating from 𝑎 and
passing through 𝑏. Then [𝑏,∞) lies entirely outside 𝐺. Let 𝐶 be a closed contour
in 𝐺. Since 𝑁 (𝐶,∞) = 0, we have 𝑁 (𝐶, 𝑧) = 0 for every 𝑧 on the segment [𝑏,∞),
hence 𝑁 (𝐶, 𝑏) = 0. □

We say a set 𝐺 is convex if the line segment [𝑎, 𝑏] lies in 𝐺 for any two points 𝑎
and 𝑏 in 𝐺. Since a convex set is star-shaped,

6.22. Theorem

A convex open set is simply connected.

The open set𝐺2 (Figure 4.9) is convex, hence simply connected. The holomorphic
function 𝑤 = 𝑧2 maps 𝐺2 to 𝐺1, and has a holomorphic inverse 𝑧 =

√
𝑤. We show

𝐺1 is also simply connected.
Let 𝐶 be a closed contour in 𝐺1, and let 𝑓 (𝑤) be a holomorphic function on 𝐺1.

Then by Theorem 3.6, ∫
𝐶

𝑓 (𝑤) 𝑑𝑤 =
∫
√
𝐶

𝑓 (𝑧2) 2𝑧 𝑑𝑧 = 0,

since
√
𝐶 is a closed contour in 𝐺2. Inserting 𝑓 (𝑤) = 1/(𝑤 − 𝑎) with 𝑎 not in 𝐺1,

we conclude 𝐶 does not wind about any point not in 𝐺1, or 𝐺1 is simply connected.
This argument is valid more broadly.

A biholomorphism is an injective holomorphic function 𝑓 (𝑧) whose inverse is
holomorphic. Open sets 𝐺1 and 𝐺2 are biholomorphic if there is a biholomorphism
𝑓 (𝑧) with domain 𝐺1 and image 𝐺2 = 𝑓 (𝐺1). Then we have
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Simple Connectedness is a Biholomophic Invariant

A biholomorphic image of a simply connected open set is simply connected.

Now we state the general

6.23. Cauchy’s Integral Formula

Let 𝐶 be a closed contour lying in an open set 𝐺 and let 𝑎 be a point in 𝐺 not
on 𝐶. If 𝐶 does not wind around any point not in 𝐺 and 𝑛 = 𝑁 (𝐶, 𝑎), then

𝑛 · 𝑓 (𝑎) = 1
2𝜋𝑖

∫
𝐶

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧

for every 𝑓 (𝑧) holomorphic on 𝐺.

The simplest case is 𝑓 (𝑧) ≡ 1, in which case the integral formula becomes the
definition of winding number 𝑁 (𝐶, 𝑎).

𝐶

𝐺

𝑎

𝑧

Fig. 6.7 Proof of Cauchy’s integral formula

Proof The idea (Figure 6.7) behind the proof is to replace𝐶 by a small circle𝐶 (𝑎, 𝑟)
about 𝑎, and then use Cauchy’s integral formula on 𝐷 (𝑎, 𝑟). To start, since𝐺 is open,
there is a small disk 𝐷 (𝑎, 𝑟) contained in 𝐺. With 𝑛 = 𝑁 (𝐶, 𝑎), let

𝐶 ′ = 𝐶 − 𝑛 · 𝐶 (𝑎, 𝑟),

where 𝑛 · 𝐶 (𝑎, 𝑟) is 𝐶 (𝑎, 𝑟) traversed 𝑛 times.
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We want to apply Cauchy’s theorem to the contour 𝐶 ′ and the punctured open set
𝐺 ′ = 𝐺 − 𝑎, so we need to check that 𝐶 ′ does not wind around any point not in 𝐺 ′.

If a point is not in 𝐺 ′, it is either 𝑎 or it is a point 𝑏 not in 𝐺. In the first case, we
know from (5.8) that

𝑁 (𝐶 ′, 𝑎) = 𝑁 (𝐶 − 𝑛 · 𝐶 (𝑎, 𝑟), 𝑎) = 𝑁 (𝐶, 𝑎) − 𝑁 (𝑛 · 𝐶 (𝑎, 𝑟), 𝑎) = 𝑛 − 𝑛 = 0,

while in the second case, 𝑏 is not in 𝐷 (𝑎, 𝑟) and not in 𝐺, so from (5.8) again

𝑁 (𝐶 ′, 𝑏) = 𝑁 (𝐶, 𝑏) − 𝑛 · 𝑁 (𝐶 (𝑎, 𝑟), 𝑏) = 0 − 0 = 0.

By Cauchy’s theorem applied to the holomorphic function 𝑓 (𝑧)/(𝑧 − 𝑎) on 𝐺 ′,∫
𝐶′

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧 = 0.

This implies

1
2𝜋𝑖

∫
𝐶

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧 =
1

2𝜋𝑖

∫
𝑛 ·𝐶 (𝑎,𝑟 )

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧 = 𝑛 · 1
2𝜋𝑖

∫
𝐶 (𝑎,𝑟 )

𝑓 (𝑧)
𝑧 − 𝑎

𝑑𝑧,

which, by Cauchy’s integral formula for a disk, equals 𝑛 · 𝑓 (𝑎). □

When 𝐺 is simply connected, Cauchy’s theorem holds for any closed contour in
𝐺, so when 𝐺 is simply connected, Cauchy’s integral formula holds for any closed
contour in 𝐺.

Exercises





Chapter 7
The Residue Theorem

7.1 Residue Theorem

In this section we rewrite Cauchy’s integral formula in a manner useful for explicitly
computing integrals.

A function that is holomorphic on an open set𝐺 except for poles is meromorphic
on 𝐺. The simplest meromorphic function is a rational function 𝑝(𝑧)/𝑞(𝑧), the ratio
of polynomial functions 𝑝(𝑧) and 𝑞(𝑧).

Since sin(𝜋𝑧) = 0 at the integers 𝑧 = 𝑛,

cot(𝜋𝑧) = cos(𝜋𝑧)
sin(𝜋𝑧)

has poles at the integers. Since (sin(𝜋𝑧)) ′ = 𝜋 cos(𝜋𝑧) is nonzero at the integers,
these poles are simple. In particular, cot(𝜋𝑧) is meromorphic on C.

More generally, if 𝑝(𝑧) and 𝑞(𝑧) are holomorphic functions on an open set 𝐺,
then the ratio

𝑓 (𝑧) = 𝑝(𝑧)
𝑞(𝑧)

is not defined at the zeros of 𝑞(𝑧). By Theorems 6.16 and 6.18, these points must
be poles of 𝑓 (𝑧). Thus the ratio of holomorphic functions is meromorphic, provided
the denominator is not identically zero.

Care must be exercised in computing the order of poles. For example, although
the origin 0 is a simple zero for both sin 𝑧 and 𝑧, 0 is not a pole for the meromorphic
function sin 𝑧/𝑧, since

sin 𝑧
𝑧

=
1
𝑧

(
𝑧 − 𝑧3

3!
+ 𝑧5

5!
− . . .

)
= 1 − 𝑧2

3!
+ 𝑧4

5!
− . . . ,

hence
lim
𝑧→0

sin 𝑧
𝑧

= 1.

131
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Suppose 𝑝(𝑧) and 𝑞(𝑧) are holomorphic with 𝑝(𝑐) ≠ 0 and 𝑞(𝑐) = 0. Then 𝑐 is
a pole of 𝑓 (𝑧) = 𝑝(𝑧)/𝑞(𝑧). Since

lim
𝑧→𝑐

(𝑧 − 𝑐) 𝑓 (𝑧) = lim
𝑧→𝑐

𝑧 − 𝑐

𝑞(𝑧) − 𝑞(𝑐) · 𝑝(𝑧) =
𝑝(𝑐)
𝑞′(𝑐) ,

we see 𝑐 is a simple pole iff in addition 𝑞′(𝑐) ≠ 0.
Let 𝑓 (𝑧) be a meromorphic function in an open set 𝐺. Let 𝑐 be a pole in 𝐺 of

order 𝑛 ≥ 1. The residue at 𝑐 is

Res( 𝑓 , 𝑐) = 1
(𝑛 − 1)!

𝑑𝑛−1

𝑑𝑧𝑛−1 (𝑧 − 𝑐)𝑛 𝑓 (𝑧)
����
𝑧=𝑐

.

For example, if 𝑝(𝑧) and 𝑞(𝑧) are holomorphic with 𝑝(𝑐) ≠ 0, 𝑞(𝑐) = 0, 𝑞′(𝑐) ≠
0, then

Res
(
𝑝(𝑧)
𝑞(𝑧) , 𝑐

)
=

𝑝(𝑐)
𝑞′(𝑐) . (7.1)

If instead 𝑐 is a double pole (pole of order 2), so 𝑝(𝑐) ≠ 0, 𝑞(𝑐) = 𝑞′(𝑐) = 0, but
𝑞′′(𝑐) ≠ 0, then

𝑞(𝑧) = (𝑧 − 𝑎)2
(
1
2
𝑞′′(𝑎) + 1

6
𝑞′′′(𝑎)(𝑧 − 𝑎) + . . .

)
,

so

Res
(
𝑝(𝑧)
𝑞(𝑧) , 𝑐

)
=

𝑑

𝑑𝑧

(𝑧 − 𝑐)2𝑝(𝑧)
𝑞(𝑧)

����
𝑧=𝑐

=
2𝑝′(𝑐)
𝑞′′(𝑐) − 2𝑝(𝑐)𝑞′′′(𝑐)

3𝑞′′(𝑐)2 . (7.2)

In particular, if 𝑐 is a simple zero for 𝑞(𝑧), 𝑞(𝑐) = 0, 𝑞′(𝑐) ≠ 0, and 𝑝(𝑐) ≠ 0,
then 𝑐 is a double pole for 𝑝(𝑧)/𝑞(𝑧)2. Replacing 𝑞 by 𝑞2 in (7.2), we get

Res
(
𝑝(𝑧)
𝑞(𝑧)2 , 𝑐

)
=

𝑝′(𝑐)
𝑞′(𝑐)2 − 𝑝(𝑐)𝑞′′(𝑐)

𝑞′(𝑐)3 . (7.3)

7.1. Cauchy’s Residue Theorem

Let 𝑓 (𝑧) be meromorphic in an open set 𝐺, and let 𝐶 be a closed contour in
𝐺 not winding about any point not in 𝐺, and not passing through the poles
of 𝑓 (𝑧). Then ∫

𝐶
𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖

∑
𝑎

𝑛𝑎 · Res( 𝑓 , 𝑎),

where 𝑛𝑎 is the winding number of 𝐶 about 𝑎, and the sum is over all poles
𝑎.
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In applications, the contour is very explicit and the winding numbers are usually
1, or the open set 𝐺 is simply connected, so the winding condition is automatic. The
proof is similar to that of Cauchy’s integral formula.

Proof For each pole 𝑎, let 𝐷𝑎 be a small disk contained in 𝐺 and centered at 𝑎,
such that there is no other pole in 𝐷𝑎. If 𝐶𝑎 is the perimeter of 𝐷𝑎, taken counter-
clockwise, then as before we check that the contour

𝐶 ′ = 𝐶 −
∑
𝑎

𝑛𝑎 · 𝐶𝑎

does not wind about any pole 𝑎, nor does it wind about any point not in 𝐺, so, by
Cauchy’s theorem, ∫

𝐶
𝑓 (𝑧) 𝑑𝑧 =

∑
𝑎

𝑛𝑎

∫
𝐶𝑎

𝑓 (𝑧) 𝑑𝑧.

Now, if 𝑎 is a pole of order 𝑛, then 𝑔(𝑧) = (𝑧 − 𝑎)𝑛 𝑓 (𝑧) is holomorphic on 𝐷𝑎,
so we may apply Cauchy’s integral formula on 𝐷𝑎 for derivatives [with 𝑔(𝑧) instead
of 𝑓 (𝑧)],

1
2𝜋𝑖

∫
𝐶𝑎

𝑓 (𝑧) 𝑑𝑧 = 1
2𝜋𝑖

∫
𝐶𝑎

𝑔(𝑧)
(𝑧 − 𝑎)𝑛 𝑑𝑧 =

1
(𝑛 − 1)!𝑔

(𝑛−1) (𝑎) = Res( 𝑓 , 𝑎),

obtaining the result. □

For example, the meromorphic function

𝜋 cot 𝜋𝑧 =
𝜋 cos 𝜋𝑧
sin 𝜋𝑧

has simple poles at the simple zeros of sin 𝜋𝑧, which are the integers. Hence

Res(𝜋 cot 𝜋𝑧, 𝑛) = 𝜋 cos 𝜋𝑧
(sin 𝜋𝑧) ′

����
𝑧=𝑛

= 1, 𝑛 = 0,±1,±2, . . .

Let 𝐶 be any closed contour in C not passing through the integers. Then 𝐶 winds
around at most finitely many integers, and, by Theorem 7.1,

1
2𝜋𝑖

∫
𝐶
𝜋 cot 𝜋𝑧 𝑑𝑧 =

∞∑
𝑛=−∞

𝑁 (𝐶, 𝑛) · Res(𝜋 cot 𝜋𝑧, 𝑛) =
∞∑

𝑛=∞
𝑁 (𝐶, 𝑛). (7.4)

7.2 Evaluation of Real Integrals

Let
𝑞(𝑧) = 𝑧𝑛 + 𝑎1𝑧

𝑛−1 + · · · + 𝑎𝑛−1𝑧 + 𝑎𝑛

be a polynomial. Assume the degree 𝑛 is at least 2. We evaluate the integral
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𝐼 =
∫ ∞

−∞

𝑑𝑥

𝑞(𝑥) .

We use the residue theorem applied to the green rectangle 𝐺 and the closed contour

𝐶+
𝑟 = 𝐶+ (0, 𝑟) + [−𝑟, 𝑟]

in Figure 7.1. Since 𝐺 is simply connected, the residue theorem applies to any closed
contour in 𝐺.

Suppose 𝑞(𝑥) has a real zero 𝑟. Factoring, we may write

𝑞(𝑥) = (𝑥 − 𝑟)𝑘 𝑝(𝑥)

for some polynomial 𝑝(𝑥) with 𝑝(𝑟) ≠ 0, and some 𝑘 ≥ 1, the order of the zero 𝑟 .
Since∫

𝑑𝑥

𝑥 − 𝑟
= log(𝑥 − 𝑟) and

∫
𝑘 − 1

(𝑥 − 𝑟)𝑘
𝑑𝑥 =

−1
(𝑥 − 𝑟)𝑘−1 , 𝑘 > 1,

the integral 𝐼 will diverge at 𝑥 = 𝑟 .
By the fundamental theorem of algebra (Theorem 6.13), 𝑞(𝑧) has 𝑛 complex zeros.

If the degree 𝑛 is odd, then 𝑞(𝑥) → ±∞ as 𝑥 → ±∞. By the intermediate value
theorem, there is at least one real zero 𝑟 of 𝑞(𝑥). Hence, to guarantee convergence
of 𝐼, we assume the degree 𝑛 ≥ 2 is even, and 𝑞(𝑥) has no real zeros. In this case,
the polynomial 𝑞(𝑥) is positive on the real line.

To evaluate 𝐼, we evaluate a contour integral over 𝐶+
𝑟 , for 𝑟 sufficiently large.

Since
𝐼 = lim

𝑟→∞

∫ 𝑟

−𝑟

𝑑𝑥

𝑞(𝑥)
and ∫

𝐶+
𝑟

𝑑𝑧

𝑞(𝑧) =
∫ 𝑟

−𝑟

𝑑𝑥

𝑞(𝑥) +
∫
𝐶+ (0,𝑟 )

𝑑𝑧

𝑞(𝑧) ,

we need to first show
lim
𝑟→∞

∫
𝐶+ (0,𝑟 )

𝑑𝑧

𝑞(𝑧) = 0. (7.5)

This is shown as in the proof of the fundamental theorem of algebra.
To estimate the integral in (7.5), by the triangle inequality, we need to estimate

the maximum of the integrand absolute value over the contour. Since 𝑞(𝑧) is in the
denominator, we need to estimate the minimum of |𝑞(𝑧) | over 𝐶+ (0, 𝑟).

Let 𝜖 (𝑟) be the minimum value of |𝑞(𝑧) |/𝑟𝑛 over 𝐶+ (0, 𝑟). Then |𝑞(𝑧) | ≥ 𝜖 (𝑟)𝑟𝑛
for 𝑧 on 𝐶+ (0, 𝑟). Since

lim
𝑧→∞

𝑞(𝑧)
𝑧𝑛

= lim
𝑧→∞

(
1 + 𝑎1

𝑧
+ 𝑎2

𝑧2 + · · · + 𝑎𝑛
𝑧𝑛

)
= 1,

we have 𝜖 (𝑟) → 1 as 𝑟 → ∞. By the triangle inequality,
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𝐶+ (0,𝑟 )

𝑑𝑧

𝑞(𝑧)

���� ≤ ∫
𝐶+ (0,𝑟 )

|𝑑𝑧 |
|𝑞(𝑧) | ≤

𝜋𝑟

𝑟𝑛𝜖 (𝑟) .

Since 𝑛 ≥ 2, (7.5) follows. This establishes

𝐼 = lim
𝑟→∞

∫
𝐶+
𝑟

𝑑𝑧

𝑞(𝑧) .

By the residue theorem (the winding numbers here are all 1 — see (5.9)),∫
𝐶+
𝑟

𝑑𝑧

𝑞(𝑧) =
∑

𝑞 (𝑎)=0
Im(𝑎)>0

Res
(

1
𝑞(𝑧) , 𝑎

)
.

Here the sum is over the zeros of 𝑞(𝑧) (𝑞(𝑎) = 0) lying in the upper-half plane
(Im(𝑎) > 0). Since there are finitely many zeros, for 𝑟 sufficiently large, these zeros
all lie inside 𝐶+

𝑟 .
When the zeros 𝑎 of 𝑞(𝑧) are simple, 𝑝(𝑎) = 0 and 𝑞(𝑎) = 0 and 𝑞′(𝑎) ≠ 0, by

(7.1), the last equation reduces to∫
𝐶+
𝑟

𝑑𝑧

𝑞(𝑧) =
∑

𝑞 (𝑎)=0
Im(𝑎)>0

1
𝑞′(𝑎) ,

where again the sum is over the zeros of 𝑞(𝑧) lying in the upper-half plane.

−𝑟 0 1 𝑟

𝐶+
𝑟

𝜔

𝜔2

Fig. 7.1 Computing 𝐼3 with 𝜔 = 𝑒2𝜋𝑖/3

We conclude
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7.2. Evaluation of a Real Integral I

Let 𝑞(𝑥) be a polynomial with even degree 𝑛 ≥ 2 and with no real zeros.
Then ∫ ∞

−∞

𝑑𝑥

𝑞(𝑥) = 2𝜋𝑖
∑

𝑞 (𝑎)=0
Im(𝑎)>0

Res
(

1
𝑞(𝑧) , 𝑎

)
, (7.6)

where the sum is over the zeros of 𝑞(𝑧) lying in the upper-half plane. If these
zeros are simple, this reduces to∫ ∞

−∞

𝑑𝑥

𝑞(𝑥) = 2𝜋𝑖
∑

𝑞 (𝑎)=0
Im(𝑎)>0

1
𝑞′(𝑎) . (7.7)

The integral of any rational function is handled in the same manner. Let 𝑝(𝑧),
𝑞(𝑧) be poynomials with no common zeros, and suppose none of the zeros of 𝑞(𝑧)
are real.

7.3. Evaluation of a Real Integral II

Let 𝑝(𝑥), 𝑞(𝑥) be polynomials with no common factors and with deg(𝑞) ≥
deg(𝑝) + 2, and with no real zeros for 𝑞(𝑥). Then∫ ∞

−∞

𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 = 2𝜋𝑖

∑
𝑞 (𝑎)=0

Im(𝑎)>0

Res
(
𝑝(𝑧)
𝑞(𝑧) , 𝑎

)
, (7.8)

where the sum is over the zeros of 𝑞(𝑧) lying in the upper-half plane. If these
zeros are simple, this reduces to∫ ∞

−∞

𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 = 2𝜋𝑖

∑
𝑞 (𝑎)=0

Im(𝑎)>0

𝑝(𝑎)
𝑞′(𝑎) . (7.9)

We use (7.7) to evaluate

𝐼3 =
∫ ∞

−∞

𝑑𝑥

1 + 𝑥 + 𝑥2 (7.10)

and

𝐼5 =
∫ ∞

−∞

𝑑𝑥

1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 . (7.11)
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−𝑟 0 1 𝑟

𝐶+
𝑟

𝜔

𝜔2

𝜔3

𝜔4

Fig. 7.2 Computing 𝐼5 with 𝜔 = 𝑒2𝜋𝑖/5

More generally, let

𝑝𝑛 (𝑧) = 1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑛−1.

We evaluate

𝐼𝑛 =
∫ ∞

−∞

𝑑𝑥

1 + 𝑥 + 𝑥2 + 𝑥3 + · · · + 𝑥𝑛−1 =
∫ ∞

−∞

𝑑𝑥

𝑝𝑛 (𝑥)
. (7.12)

Since

𝑧𝑛 − 1 = (𝑧 − 1) (1 + 𝑧 + 𝑧2 + · · · + 𝑧𝑛−1) = (𝑧 − 1)𝑝𝑛 (𝑧),

we have
𝑝𝑛 (𝑧) =

𝑧𝑛 − 1
𝑧 − 1

. (7.13)

Thus the zeros of 𝑝𝑛 (𝑧) are exactly the 𝑛-th roots of unity that are not 1. In particular,
the zeros of 𝑝𝑛 (𝑧) are simple.

It follows that the only possible real zeros of 𝑝𝑛 (𝑧) are ±1. Clearly 1 is never a
zero of 𝑝𝑛 (𝑧), while −1 is a zero iff 𝑛 is even. Thus, to guarantee convergence of 𝐼𝑛,
we assume 𝑛 ≥ 3 and 𝑛 is odd.

Now 𝑧𝑛 − 1 has 𝑛 zeros (3.15),

1, 𝜔, 𝜔2, . . . , 𝜔𝑛−1, 𝜔 = 𝑒2𝜋𝑖/𝑛.

It follows that 𝑝𝑛 (𝑧) has the 𝑛 − 1 zeros

𝜔, 𝜔2, 𝜔3, . . . , 𝜔𝑛−1.
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Since we assume 𝑛 is odd, these zeros are all non-real (Figures 7.1 and 7.2 and 7.3).

−𝑟 0 1 𝑟

𝐶+
𝑟

𝜔

𝜔2𝜔3

𝜔4

𝜔5

𝜔6

𝜔7

𝜔8 𝜔9

𝜔10

Fig. 7.3 Computing 𝐼11 with 𝜔 = 𝑒2𝜋𝑖/11

Thus the zeros of 𝑝𝑛 (𝑧) lying in the upper-half plane are

𝜔, 𝜔2, . . . , 𝜔 (𝑛−1)/2.

When 𝑟 > 1, these zeros are inside 𝐶+
𝑟 .

Using (7.13), check that

𝑝′𝑛 (𝑎) =
𝑛𝑎𝑛−1

𝑎 − 1
,

for any zero 𝑎 of 𝑝𝑛 (𝑧). Then, by (7.7),
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𝐼𝑛 = 2𝜋𝑖
∑

𝑝𝑛 (𝑎)=0
Im(𝑎)>0

1
𝑝′𝑛 (𝑎)

. = 2𝜋𝑖
∑
𝑎𝑛=1
𝑎≠1

Im(𝑎)>0

𝑎 − 1
𝑛𝑎𝑛−1

=
2𝜋𝑖
𝑛

∑
𝑎𝑛=1
𝑎≠1

Im(𝑎)>0

𝑎(𝑎 − 1)
𝑎𝑛

=
2𝜋𝑖
𝑛

∑
𝑎𝑛=1
𝑎≠1

Im(𝑎)>0

𝑎(𝑎 − 1)

=
2𝜋𝑖
𝑛

(𝑛−1)/2∑
𝑘=1

𝜔𝑘 (𝜔𝑘 − 1)

=
2𝜋𝑖
𝑛

(𝑛−1)/2∑
𝑘=0

𝜔𝑘 (𝜔𝑘 − 1).

By definition of 𝑝𝑛 (𝑧), this equals

2𝜋𝑖
𝑛

( (𝑛+1)/2−1∑
𝑘=0

𝜔2𝑘 −
(𝑛+1)/2−1∑

𝑘=0
𝜔𝑘

)
=

2𝜋𝑖
𝑛

(
𝑝 (𝑛+1)/2 (𝜔2) − 𝑝 (𝑛+1)/2 (𝜔)

)
. (7.14)

To arrive at an explicitly real expression, we use the exponential form of sin and
cos (§3.4). Set 𝜃 = 𝜋/𝑛; then 𝜔 = 𝑒2𝑖 𝜃 .

By (7.13),

𝑝 (𝑛+1)/2 (𝜔2) − 𝑝 (𝑛+1)/2 (𝜔) =
(𝜔2) (𝑛+1)/2 − 1

𝜔2 − 1
− 𝜔 (𝑛+1)/2 − 1

𝜔 − 1

=
2𝜔

𝜔2 − 1
− 𝜔 (𝑛+1)/2

𝜔 − 1
.

But
2𝜔

𝜔2 − 1
=

2
𝜔 − 𝜔−1 =

1
𝑖

2𝑖
𝑒2𝑖 𝜃 − 𝑒−2𝑖 𝜃 =

1
𝑖
· 1

sin(2𝜃) ,

and

−𝜔 (𝑛+1)/2

𝜔 − 1
=

√
𝜔

𝜔 − 1
=

1
√
𝜔 − 1/√𝜔

=
1
2𝑖

· 1
sin 𝜃

.

Hence
𝐼𝑛 =

2𝜋𝑖
𝑛

(
1
𝑖
· 1

sin(2𝜃) +
1
2𝑖

· 1
sin 𝜃

)
=

2𝜃
sin(2𝜃) +

𝜃

sin 𝜃
.

Summarizing,
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7.4. Evaluation of a Real Integral III

Suppose 𝑛 is a positive integer with 𝑛 ≥ 3 and odd, and let 𝜃 = 𝜋/𝑛. Then∫ ∞

−∞

𝑑𝑥

1 + 𝑥 + 𝑥2 + 𝑥3 + · · · + 𝑥𝑛−1

coverges and equals
2𝜃

sin(2𝜃) +
𝜃

sin 𝜃
.

When 𝑛 is even, the integral diverges at 𝑥 = −1.

In particular (Table 2.11) ∫ ∞

−∞

𝑑𝑥

1 + 𝑥 + 𝑥2 =
2𝜋
√

3
,

and ∫ ∞

−∞

𝑑𝑥

1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 =
2𝜋
5

√
8

5 +
√

5
+ 𝜋

5

√
8

5 −
√

5
.

This can be generalized.

7.5. Evaluation of a Real Integral IV

Suppose 𝑚 and 𝑛 are positive integers with 𝑛 ≥ 𝑚 + 2. Let 𝜃 = 𝜋/𝑛. Then∫ ∞

−∞

1 + 𝑥 + 𝑥2 + 𝑥3 + · · · + 𝑥𝑚−1

1 + 𝑥 + 𝑥2 + 𝑥3 + · · · + 𝑥𝑛−1 𝑑𝑥

converges and equals
2𝜃 sin(𝑚𝜃)

sin 𝜃 sin((𝑚 + 1)𝜃)
when 𝑛 and 𝑚 are both even, and equals

𝜃 sin(𝑚𝜃)
sin 𝜃 sin((𝑚 + 1)𝜃) +

𝜃

sin 𝜃
− (−1)𝑚 𝜃

sin((𝑚 + 1)𝜃) ,

when 𝑛 is odd. When 𝑛 is even and 𝑚 is odd, the integral diverges at 𝑥 = −1.

The integral (7.6) may be modified by an exponential factor 𝑒𝑖𝑧 . Since

|𝑒𝑖𝑧 | = |𝑒𝑖 (𝑥+𝑖𝑦) | = |𝑒𝑖𝑥𝑒−𝑦 | ≤ 1
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on the upper-half plane 𝑦 > 0, we also have∫
𝐶+ (0,𝑟 )

𝑒𝑖𝑧
𝑝(𝑧)
𝑞(𝑧) 𝑑𝑧 → 0 as 𝑟 → ∞,

as long as deg(𝑞) ≥ (𝑝) + 2. Thus the same procedure as before works, and we
obtain

7.6. Evaluation of a Real Integral V

Let 𝑝(𝑥), 𝑞(𝑥) be polynomials with no common factors and with deg(𝑞) ≥
deg(𝑝) + 2, and with no real zeros for 𝑞(𝑥). Then∫ ∞

−∞
𝑒𝑖𝑧

𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 = 2𝜋𝑖

∑
𝑞 (𝑎)=0

Im(𝑎)>0

Res
(
𝑒𝑖𝑧

𝑝(𝑧)
𝑞(𝑧) , 𝑎

)
, (7.15)

where the sum is over the poles of 𝑝(𝑧)/𝑞(𝑧) lying in the upper-half plane.
If these poles are simple, this reduces to∫ ∞

−∞
𝑒𝑖𝑥

𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 = 2𝜋𝑖

∑
𝑞 (𝑎)=0

Im(𝑎)>0

𝑒𝑖𝑎
𝑝(𝑎)
𝑞′(𝑎) . (7.16)

Exercises
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−𝐶, 66
−𝑃, 4
𝐶, 65
𝐶 (𝑎, 𝑟), 69, 70
𝐷 (𝑎, 𝑟), 69
𝐺, 70
𝑁 (𝐶, 𝑎), 95
𝑃, 2
𝑃 + 𝑃′, 2
𝑃 − 𝑃′, 4
𝑃/𝑃′, 7
𝑃𝑃′, 7
𝑅, 109
[𝑎, 𝑏], 65
C, 10
Im(𝑧), 12
Re(𝑧), 12
𝜕, 87
cos 𝑧, 57
cos 𝜃, 23

∫
𝐶

, 89(
𝑛

𝑘

)
, 39

log 𝑧, 84
𝜔, 29
𝜋, 19
Res( 𝑓 , 𝑐), 132
sin 𝑧, 57
sin 𝜃, 23√
𝑧, 14

𝜃 (𝑧), 23
|𝐶 |, 65
|𝑃 |, 3
𝑒, 42
𝑒𝑧 , 57
𝑓 ′(𝑧), 73
𝑓 (𝑛) (𝑧), 78
𝑖, 10
𝑛!, 39
𝑡𝑃, 3
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Index

𝑛-factorial, 39
bounds for, 40

𝑛-th term test, 54

angle, 5, 23
additivity, 5, 20
anchored, 6
Archimedes, 6
measure, 6, 21
stacking, 6
stacking formula, 7
vertex, 5

anti-derivative, 91
Archimedes, 6

angle, 6
bisection, 16
estimate, 6
sequence, 17

biholomorphism, 127
binomial

coefficient, 37
theorem, 35

branches, 99

Cauchy’s estimates, 118
Cauchy’s integral formula

derivatives, 118
disk, 116
in general, 128
punctured disk, 117

rectangle, 116
rectangle perimeter, 113

Cauchy’s residue theorem, 132
Cauchy’s theorem

disk, 114
in general, 125
punctured disk, 116
punctured rectangle, 116
punctured rectangle perimeter, 112
rectangle, 114
rectangle perimeter, 109

Cauchy-Riemann equation, 81
Cauchy-Schwarz inequality, 50
circle, 4

unit, 4
completeness property

for C, 51
for R, 18

complex
imaginary part, 12
number, 10
real part, 12

connected
points, 72
set, 72

contour, 67
additivity, 90
chain rule, 74
closed, 68
connected, 65, 68
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equivalent, 67, 90
constant, 68
integral, 89
length, 65
path-independence, 90
sum, 67

cosine, 23
CR equation, 81

d-bar operator, 87
derivative

chain rule, 73
rules, 73

disk of convergence, 78, 121
distance formula, 3

entire, 83
Euler’s identity, 49
exponential

real, 41
derivative, 44

fundamental theorem of
algebra, 119
calculus

complex, 62
contour, 91
real, 45

trigonometry, 25

geometric
series, 53, 77, 119
sum, 41, 53, 137

holomorphic, 83
anti-derivative, 91
continuously, 100

integral
complex, 61
differentiation under the, 94
substitution under the, 63
switching the order, 63

isolated zero, 122

law of exponents

complex, 58
real, 43

Liouville’s theorem, 118
logarithm

branch, 84
derivative, 84
principal, 85

mean value property, 117
meromorphic, 131
Morera’s theorem, 121

number, 10
𝜋, 19
𝑒, 42
𝑖, 10, 12
absolute value, 13
addition, 11
complex, 10
imaginary, 11
multiplication, 12
real, 11
square root, 14
subtraction, 12

open
disjoint sets, 72
disk, 69
set, 70

simply connected, 126

partial sum, 𝑛-th , 52
Pascal’s triangle, 37
period, 25
points

absolute value, 3
addition, 2
dilation, 3
distance between, 3
division, 10
multiplication, 9
radius, 3
shadow, 2
subtraction, 4

polar
coordinates, 19
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form, 59
pole, 123

order of, 124
simple, 124

punctured
disk, 115
rectangle, 111
unit circle, 16

region, 72
residue, 132
root of unity, 30, 60

𝑛-th, 30
principal, 32

sequence, 51
cauchy, 51
convergent, 51

series, 52
absolute convergence, 54
Bernoulli, 121
convergent, 53
power, 77
product, 56
tail, 53

set
complement, 70
convex, 127
open, 70
open simply connected, 126
star-shaped, 127

sine, 23
singularity

essential, 123
isolated, 123
removable, 123

square root
branch, 85
derivative, 86
principal, 86

Taylor
polynomial, 45
series

complex, 77
real, 45

triangle inequality, 50
for complex integrals, 62
for contour integrals, 93

trigonometric
addition formula, 27
derivatives, 29
doubling formula, 27

unit circle, 4
punctured, 16, 23

vertex, 5

winding number, 95
of a disk, 97
of a rectangle, 97

zero, 122
order of, 122
simple, 122
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