THE HOHENBERG-KOHN THEOREM FOR MARKOV SEMIGROUPS

OMAR HIJAB

ABSTRACT. At the basis of much of computational chemistry is density functional theory, as initiated by the Hohenberg-Kohn theorem. The theorem states that, when nuclei are fixed, electronic systems are determined by 1-electron densities. We recast and derive this result within the context of Markov semigroups.

1. Introduction

In quantum mechanics, the probability distribution of the ground state of an N-electron system¹ is a permutation-symmetric probability measure μ on \mathbf{R}^{3N} , and its 1-electron marginal is the probability measure ρ on \mathbf{R}^3 given by

$$\int_{\mathbf{R}^3} f \, d\rho = \int_{\mathbf{R}^{3N}} f(x_1) \, d\mu(x_1, \dots, x_N).$$

The potential acting on the electrons is a sum $V_0 + V$ of potentials, where V_0 is the repulsive Coulomb potential between electrons, and V is the attractive nuclear or external potential²

(1)
$$V(x_1, ..., x_N) = \frac{v(x_1) + \dots + v(x_N)}{N},$$

for some function v on \mathbb{R}^3 . The system is specified by the external potential v, as V_0 is the same for all N-electron systems.

Then the electronic ground state energy is given by

(2)
$$E(V_0 + V) = \inf_{\psi} \int_{\mathbf{R}^{3N}} (|\operatorname{grad} \psi|^2 + V_0 \psi^2 + V \psi^2) \ dx_1 \dots dx_N,$$

where the infimum is over all real ψ satisfying $\int \psi^2 dx_1 \dots dx_N = 1$, and the distribution corresponding to the ground state ψ is $d\mu = \psi^2 dx_1 \dots dx_N$.

The Hohenberg-Kohn theorem [8] states that the external potential v — and thus the electronic system — is determined by the marginal ρ : If μ_1 , μ_2 are distributions of ground states ψ_1 , ψ_2 corresponding to external potentials v_1 , v_2 , and their marginals agree, $\rho_1 = \rho_2$, then $v_1 - v_2$ is a constant. The thrust of the theorem is to reduce the study of electronic systems from 3N variables down to 3 variables.

Date: January 15, 2018.

¹⁹⁹¹ Mathematics Subject Classification. 46N50, 47N30, 60J25, 60J35.

 $Key\ words\ and\ phrases.$ Hohenberg-Kohn theorem, Markov semigroup, principal eigenvalue , density functional theory.

¹An atom, molecule, or solid where nuclei are fixed.

 $^{^2}$ The 1/N normalization is not standard.

In this paper we generalize this result from the above electronic setting to the general (non-self-adjoint) Markov semigroup setting. To help simplify matters, instead of \mathbb{R}^3 , we take a compact metric space X as our position space.

Let X be a compact metric space and let P_t , $t \geq 0$, be a Markov semigroup on C(X) with generator L defined on its dense domain $\mathcal{D} \subset C(X)$. Examples of semigroups which satisfy all our assumptions below are

 \bullet X is a compact manifold and L is a nondegenerate elliptic second order differential operator with smooth coefficients, given by

$$Lf(x) = \sum a_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum b_i(x) \frac{\partial f}{\partial x_i}$$

in local coordinates.

• $X = \{1, ..., d\}$ and L is a $d \times d$ matrix with nonnegative off-diagonal entries whose row-sums vanish and whose adjacency graph is connected.

Given V in C(X), let P_t^V , $t \ge 0$, denote the Schrodinger semigroup on C(X) generated by L + V. Then the principal eigenvalue

$$\lambda_V \equiv \lim_{t \uparrow \infty} \frac{1}{t} \log ||P_t^V||$$

exists and is given by the Donsker-Varadhan formula [4]

(3)
$$\lambda_V = \sup_{\mu} \left(\int_X V \, d\mu - I(\mu) \right)$$

where the supremum is over all probability measures μ on X and

$$I(\mu) = -\inf_{u \in \mathcal{D}^+} \int_X \frac{Lu}{u} \, d\mu.$$

Here the infimum is over all positive u in \mathcal{D} . In the electronic case, (3) reduces to (2) and $\lambda_V = -E(-V)$.

Given $f \in C(X)$ and a probability measure μ on X, let $\mu(f)$ denote the integral of f against μ . Let M(X) denote the space of probability measures on X, and let V be in C(X).

An equilibrium measure for V is a $\mu \in M(X)$ achieving³ the supremum in (3), $\lambda_V = \mu(V) - I(\mu)$.

A ground measure for V is a $\pi \in M(X)$ satisfying

(4)
$$\int_X e^{-\lambda_V t} P_t^V f \, d\pi = \int_X f \, d\pi, \qquad t \ge 0, f \in C(X).$$

By positivity,

(5)
$$P_t^V f(x) = \int_V p^V(t, x, dy) f(y)$$

for some family $(t,x) \mapsto p^V(t,x,\cdot)$ of bounded positive measures on X. Thus $0 \leq P_t^V f(x) \leq +\infty$ is well-defined for f nonnegative Borel on X. Let μ be in M(X).

 $^{^3{\}rm The}$ supremum is always achieved as I is lower semicontinuous (Lemma 1).

A ground state for V relative to μ is a nonnegative Borel function ψ on X satisfying $\psi > 0$ a.e. μ and

$$e^{-\lambda_V t} P_t^V \psi = \psi, \quad a.e.\mu, t > 0.$$

Thus a ground state ψ plays the role of a right eigenvector for L+V, and a ground measure π plays the role of a left eigenvector for L+V, both with eigenvalue λ_V .

When N=1, the Hohenberg-Kohn theorem states that if μ is the distribution of a ground state ψ corresponding to V_1 and to V_2 , then $V_1 - V_2$ is a constant. In the electronic case, $d\mu = \psi^2 dx$ and this is an immediate consequence of the Schrodinger equations $L\psi + V_i\psi = \lambda_{V_i}\psi$, i = 1, 2. In the general case, however, establishing this turns out to be the heart of the matter, as the correspondence between equilibrium measures μ and ground states ψ is not as direct. The following sheds light on the relation between μ , ψ , and π .

Theorem 1. Let $\mu, \pi \in M(X)$ and let $V \in C(X)$. Suppose $\mu << \pi$ and suppose $\psi = d\mu/d\pi$ satisfies $\log \psi \in L^1(\mu)$. Then the following hold.

- (1) If ψ is a ground state for V relative to μ and π is a ground measure for V, then μ is an equilibrium measure for V.
- (2) If π is a ground measure for V and μ is an equilibrium measure for V, then ψ is a ground state for V relative to μ .
- (3) If μ is an equilibrium measure for V and ψ is a ground state for V relative to μ , then π is a ground measure for V.

In the electronic case, L is self-adjoint relative to $dx_1 \dots dx_N$, so heuristically a right eigenvector is a left eigenvector, so by Theorem 1, a ground state ψ leads to a ground measure $d\pi = \psi \, dx_1 \dots dx_N$ and to an equilibrium measure $d\mu = \psi \, d\pi =$ $\psi^2 dx_1 \dots dx_N.$

Given ψ nonnegative, let

$$P_t^{V,\psi}f = \frac{e^{-\lambda_V t} P_t^V(f\psi)}{\psi}.$$

Then $P_t^{V,\psi}f(x)$ is defined at a point x if $P_t^V(|f|\psi)(x) < \infty$ and $\psi(x) > 0$.

Theorem 2. Fix $V \in C(X)$ and suppose

(7)
$$C \equiv \sup_{t \ge 0} \left(e^{-\lambda_V t} \| P_t^V \| \right) < \infty,$$

and let μ be an equilibrium measure for V. Then there is a ground state ψ for V relative to μ and a ground measure π for V such that

- $\log \psi \in L^1(\mu)$,
- $\mu << \pi$ and $d\mu/d\pi = \psi$, and $P_t^{V,\psi}$, $t \ge 0$, is a Markov semigroup on $L^1(\mu)$, and μ is $P_t^{V,\psi}$, $t \ge 0$, invariant

$$\int_X P_t^{V,\psi} f \, d\mu = \int_X f \, d\mu, \qquad f \in L^1(\mu), t \ge 0.$$

Note this existence result is not just a Perron-Frobenius result, as ψ and π are determined subordinate to the given equilibrium measure μ .

Now we list our assumptions on the Markov semigroup P_t , $t \geq 0$.

We assume a strong uniformity condition

(A) There is a T > 0 and an $\epsilon = \epsilon(T) > 0$ such that $P_T|f|(x) \ge \epsilon P_T|f|(y)$ for all $x, y \in X$ and $f \in C(X)$.

As we shall see, (A) implies (7). We also assume

(B) There is a T > 0 such that $f \ge 0$ in C(X) implies $P_T f > 0$ everywhere in X.

A core for P_t , $t \geq 0$, is a subspace $\mathcal{D}^{\infty} \subset \mathcal{D}$ whose closure in the graph norm ||f|| + ||Lf|| equals \mathcal{D} . We assume

(C) There is a core \mathcal{D}^{∞} that is closed under multiplication and division: If $f, g \in \mathcal{D}^{\infty}$ then $fg \in \mathcal{D}^{\infty}$, and if moreover g > 0, then $f/g \in \mathcal{D}^{\infty}$.

Let [A, B] = AB - BA denote the bracket of operators A, B. Given $g \in C(X)$, let g also denote the corresponding multiplication operator on C(X). Then (Lemma 2) the double bracket [[L, g], g] is a positive operator

$$f, fg, fg^2 \in \mathcal{D}$$
 and $f \geq 0$ implies $[[L, g], g]f \geq 0$.

The square-field operator is

$$\Gamma(g) \equiv [[L, g], g]1 = L(g^2) - 2gLg \qquad g \in \mathcal{D}^{\infty}.$$

By the positivity of the double bracket, $\Gamma(g) \geq 0$. We assume the nondegeneracy condition

(D) If $g \in \mathcal{D}^{\infty}$ and $\Gamma(g) \equiv 0$, then g is a constant.

Let B(X) denote the bounded Borel functions on X. We say a potential V is smooth if P_t^V maps B(X) into \mathcal{D}^{∞} for t > 0. This depends on both L and V.

For the examples above, (A) and (B) are valid, and (C) and (D) are valid if we take $\mathcal{D}^{\infty} = C^{\infty}(X)$, and V is smooth in the above sense if V is in $C^{\infty}(X)$ (for the second example, $C^{\infty}(X) = C(X) = B(X)$ equals all functions on X).

Theorem 3. Assume (A), (B), (C), (D) and let V_1, V_2 be smooth potentials. If μ is an equilibrium measure for V_1 and for V_2 , then $V_1 - V_2$ is a constant.

This result should hold more broadly, in which case one should obtain $V_1 - V_2$ is a constant on the support of μ . This restriction is natural because one cannot expect to determine the potential in regions outside the electron cloud. The more general result is easily verified when $L \equiv 0$ for any $V_1, V_2 \in C(X)$, so nondegeneracy should not play a role in a broader formulation. A discrete time version of Theorem 3 in the case $X = \{1, \ldots, d\}$ is in [6].

Note that μ is an equilibrium measure for V iff V is a subdifferential of I at μ , i.e. iff

$$I(\nu) \ge I(\mu) + \nu(V) - \mu(V), \qquad \nu \in M(X).$$

Subdifferentials at a given μ need not exist. When subdifferentials do exist, Theorem 3 provides conditions under which uniqueness holds at the given μ , up to a constant.

Next we look at Markov semigroups on $C(X^N)$.

Let $N \geq 1$ and X^N be the N-fold product of X. Let $P_t, t \geq 0$, be a Markov semigroup on $C(X^N)$, representing the motion of N particles, and let L be its generator. Let $P_t^i, t \geq 0, 1 \leq i \leq N$, be Markov semigroups on C(X). When $P_t, t \geq 0$, is the product of $P_t^i, t \geq 0, 1 \leq i \leq N$, with the i-th semigroup acting on the i-th component in $C(X^N)$,

$$(P_t^i f)(x_1, \dots, x_N) = P_t^i (f(x_1, \dots, x_{i-1}, \cdot, x_{i+1}, \dots, x_N))(x_i), \quad 1 \le i \le N,$$

we have non-interacting particles. When the semigroups P_t^i , $t \geq 0$, $1 \leq i \leq N$, are the same, we have identical non-interacting particles. If $V(x_1, \ldots, x_N)$ is a potential in $C(X^N)$, particle interactivity is then modelled by the Schrodinger semigroup P_t^V , $t \geq 0$, on $C(X^N)$.

If (A) holds for single particle Markov semigroups P_t^i , $t \geq 0$, $1 \leq i \leq N$, on C(X), then (A) holds (with ϵ replaced by ϵ^N) for the product Markov semigroup P_t , $t \geq 0$, on $C(X^N)$, corresponding to non-interacting particles. Similarly for (B). If (C) and (D) hold for P_t^i , $t \geq 0$, $1 \leq i \leq N$, on C(X), then (C) and (D) hold for the product Markov semigroup P_t , $t \geq 0$, on $C(X^N)$, assuming $\mathcal{D}^{\infty}(X^N)$ can be chosen to be a tensor product of $\mathcal{D}^{\infty}(X)$ in a suitable sense. This is the case for the examples above when $\mathcal{D}^{\infty}(X^N) = C^{\infty}(X^N)$ and $\mathcal{D}^{\infty}(X) = C^{\infty}(X)$.

A potential V in $C(X^N)$ is separable if it is of the form (1) for some v in C(X). We are interested in Schrödinger semigroups on $C(X^N)$ with generators of the form $L + V_0 + V$ with V_0, V in $C(X^N)$ and V separable.

Given $f \in C(X^N)$ and a permutation σ of (1, ..., N), let

$$f^{\sigma}(x_1,\ldots,x_N)=f(x_{\sigma 1},\ldots,x_{\sigma N}).$$

Given a measure μ on X^N , let μ^{σ} be the measure with action $\mu^{\sigma}(f) = \mu(f^{\sigma})$. A potential V on X^N is symmetric if $V^{\sigma} = V$ and a measure μ on X^N is symmetric if $\mu^{\sigma} = \mu$, both for all permutations σ .

Let P_t , $t \ge 0$, be a Markov semigroup on $C(X^N)$ with generator L. We say the semigroup P_t , $t \ge 0$, is symmetric if $(P_t f)^{\sigma} = P_t f^{\sigma}$, $t \ge 0$, for all permutations σ . When the semigroup is symmetric and V is symmetric, we can restrict the supremum in (3) (with X replaced by X^N) to symmetric measures. As before, if μ is a symmetric probability measure on X^N , its 1-particle marginal is the probability measure ρ on X satisfying

$$\int_X f \, d\rho = \int_{X^N} f(x_1) \, d\mu(x_1, \dots, x_N), \qquad f \in C(X).$$

Note for μ symmetric with marginal ρ and V separable, we have $\mu(V) = \rho(v)$. Here is the Hohenberg-Kohn theorem in this setting.

Theorem 4. Let P_t , $t \geq 0$ be a Markov semigroup on $C(X^N)$ satisfying (A), (B), (C), (D) and let V_0 be a potential and V_1 , V_2 separable potentials, all in $C(X^N)$, with V_1 , V_2 , arising from v_1 , v_2 in C(X). Assume $V_0 + V_1$ and $V_0 + V_2$ are smooth. Let μ_1 , μ_2 be symmetric equilibrium measures for $V_0 + V_1$, $V_0 + V_2$ and let ρ_1 , ρ_2 denote their 1-particle marginals. Then $\rho_1 = \rho_2$ implies $v_1 - v_2$ is constant.

For example this applies if V_0 is symmetric and P_t , $t \geq 0$, corresponds to non-interacting identical particles.

The proof of this is so short we present it right away.

Proof of Theorem 4. If μ_1 is an equilibrium measure for $V_0 + V_2$, then by Theorem 3, $V_1 - V_2 = (V_0 + V_1) - (V_0 + V_2)$ is constant on X^N , but $V_1 - V_2$ is separable, hence $v_1 - v_2$ is constant on X. Otherwise, we have

$$\mu_1(V_0 + V_2) - I(\mu_1) < \lambda_{V_0 + V_2} = \lambda_{V_0 + V_2} - \lambda_{V_0 + V_1} + \mu_1(V_0 + V_1) - I(\mu_1)$$

which implies

$$\rho_1(v_2 - v_1) = \mu_1(V_2 - V_1) < \lambda_{V_0 + V_2} - \lambda_{V_0 + V_1}$$

hence

$$\rho_1(v_2 - v_1) < \lambda_{V_0 + V_2} - \lambda_{V_0 + V_1}.$$

Reversing the roles of V_1 , V_2 ,

$$\rho_2(v_1 - v_2) < \lambda_{V_0 + V_1} - \lambda_{V_0 + V_2}.$$

Since $\rho_1 = \rho_2$, this is a contradiction.

Let $I(\mu)$ correspond to a symmetric Markov semigroup on $C(X^N)$, and let V_0 , V be in $C(X^N)$ with V_0 symmetric and V separable. Let

$$I_{HK}(\rho) \equiv \inf_{\mu \to \rho} \left(I(\mu) - \int_{X^N} V_0 \, d\mu \right),$$

where the infimum is over all symmetric μ in $M(X^N)$ with marginal ρ in M(X). Then (3) written over $M(X^N)$ reduces to

$$\lambda_{V_0+V} = \sup_{\mu} \left(\int_{X^N} (V_0 + V) d\mu - I(\mu) \right) = \sup_{\rho} \left(\int_X v d\rho - I_{HK}(\rho) \right).$$

Thus the computation of the principal eigenvalue is reduced to computing the $M(X^N)$ universal object I_{HK} followed by an optimization over M(X). In the electronic case, density functional theory is the study of approximations of I_{HK} [9], [10].

The following sections contain the proofs of Theorems 1, 2, 3 and supporting Lemmas. Many of the Lemmas are basic and go back to the early papers [4], [5] and the book [3].

2. The Schrodinger semigroup

Let X be a compact metric space, let C(X) denote the space of real continuous functions with the sup norm $\|\cdot\|$, and let M(X) denote the space of Borel probability measures with the topology of weak convergence. Then M(X) is a compact metric space. Throughout $\mu(f)$ denotes the integral of f against μ .

A strongly continuous positive semigroup on C(X) is a semigroup P_t , $t \geq 0$, of bounded operators on C(X) preserving positivity $P_t f \geq 0$, for $f \geq 0$, $t \geq 0$, and satisfying $||P_t f - f|| \to 0$ as $t \to 0+$. Then the C(X)-valued map $t \mapsto P_t f$ is continuous on $[0,\infty)$ for $f \in C(X)$. A Markov semigroup on C(X) is a strongly continuous positive semigroup on C(X) satisfying $P_t 1 = 1$, $t \geq 0$.

Let $C^+(X)$ the strictly positive functions in C(X). Then $P_t f \in C^+(X)$ when $f \in C^+(X)$.

The subspace $\mathcal{D} \subset C(X)$ of functions $f \in C(X)$ for which the limit

(8)
$$\lim_{t \to 0+} \frac{1}{t} \left(P_t f - f \right)$$

exists in C(X) is dense. If Lf is defined to be this limit, then $P_t(\mathcal{D}) \subset \mathcal{D}$, $t \geq 0$, the C(X)-valued map $t \mapsto P_t f$ is differentiable on $(0, \infty)$ for $f \in \mathcal{D}$, and $(d/dt)P_t f = L(P_t f) = P_t(Lf)$, for $f \in \mathcal{D}$ and t > 0.

Given V and f in C(X), the Schrodinger semigroup may be constructed as the unique C(X)-valued continuous map $t \mapsto u(t) = P_t^V f$, $t \ge 0$, satisfying

(9)
$$u(t) = P_t f + \int_0^t P_{t-s} V u(s) \, ds, \qquad t \ge 0.$$

For $f \geq 0$, this implies

(10)
$$e^{t\min V} P_t f \le P_t^V f \le e^{t\max V} P_t f, \qquad t \ge 0,$$

which implies

$$\min V < \lambda_V < \max V.$$

Then P_t^V , $t \ge 0$, is a strongly continuous positive semigroup on C(X), and the limit

$$\lim_{t \to 0+} \frac{1}{t} \left(P_t^V f - f \right)$$

exists in C(X) if and only if $f \in \mathcal{D}$, in which case it equals (L+V)f. Moreover $P_t^V(\mathcal{D}) \subset \mathcal{D}$, $t \geq 0$, the C(X)-valued map $t \mapsto P_t^V f$ is differentiable on $(0, \infty)$ for $f \in \mathcal{D}$, and $(d/dt)P_t^V f = (L+V)(P_t^V f) = P_t^V (Lf+Vf)$, for $f \in \mathcal{D}$ and t > 0. Let \mathcal{D}^+ be the strictly positive functions in \mathcal{D} . For μ in M(X), let

$$I^{V}(\mu) \equiv I(\mu) - \int_{Y} V d\mu + \lambda_{V} = -\inf_{u \in \mathcal{D}^{+}} \int_{Y} \frac{(L + V - \lambda_{V})u}{u} d\mu$$

Then $I^0(\mu) = I(\mu)$ and $I^V(\mu) = 0$ iff μ is an equilibrium measure for V.

Lemma 1. For V in C(X), I^V is lower semicontinuous, convex, and $0 \le I^V \le +\infty$. In particular, I is lower semicontinuous, convex, and $0 \le I \le +\infty$.

Proof. Lower semicontinuity and convexity follow from the fact that I^V is the supremum of continuous affine functions. The Donsker-Varadhan formula implies I^V is nonnegative.

Lemma 2. If f, gf, g^2f are in \mathcal{D} and $f \geq 0$, then $[[L, g], g]f \geq 0$.

Proof. Expanding

$$\int_X p(t, x, dy) f(y) \left(g(y) - g(x)\right)^2$$

yields

$$P_t(fg^2) - 2gP_t(fg) + g^2P_tf \ge 0$$

hence

$$(P_t(fg^2) - fg^2) - 2g(P_t(fg) - fg) + g^2(P_tf - f) \ge 0.$$

Dividing by t and sending $t \to 0+$ yields

$$[[L,g],g]f = L(fg^2) - 2gL(fg) + g^2Lf \ge 0.$$

Note when P_t , $t \geq 0$, is a diffusion, e.g. our first example above, one has $[[L,g],g]f=f\cdot\Gamma(g)$ is multiplication by the symbol of L, a standard characterization of second-order differential operators.

For t > 0 and u in $C^+(X)$, (10) implies

$$\log\left(\frac{e^{-\lambda_V t} P_t^V u}{u}\right)$$

is in C(X).

Lemma 3. For V in C(X), $\mu \in M(X)$, and u in $C^+(X)$,

(12)
$$\int_{X} \log \left(\frac{e^{-\lambda_{V} t} P_{t}^{V} u}{u} \right) d\mu \ge -t I^{V}(\mu), \qquad t \ge 0.$$

The proof follows that of Lemma 3.1 in [5].

Proof. By definition of $I^{V}(\mu)$,

(13)
$$\int_{X} \frac{(L+V-\lambda_{V})u}{u} d\mu \ge -I^{V}(\mu), \qquad u \in \mathcal{D}^{+}.$$

When $I^V(\mu)=+\infty$, the result is valid, hence we may assume $I^V(\mu)<\infty$. For t=0, (12) is an equality. Moreover for t>0 and $u\in\mathcal{D}^+$, by (10) we have $e^{-\lambda_V t} P_t^V u\in\mathcal{D}^+$ and

$$\frac{d}{dt} \int_X \log \left(\frac{e^{-\lambda_V t} P_t^V u}{u} \right) \, d\mu = \int_X \frac{(L+V-\lambda_V)(e^{-\lambda_V t} P_t^V u)}{e^{-\lambda_V t} P_t^V u} \, d\mu \geq -I^V(\mu).$$

This establishes (12) for $u \in \mathcal{D}^+$. Since \mathcal{D}^+ is dense in $C^+(X)$, (12) is valid for u in $C^+(X)$.

3. Equilibrium Measures

Let $L^1(\mu)$ denote the μ -integrable Borel functions on X with

$$||f||_{L^1(\mu)} = \int_X |f| \, d\mu = \mu(|f|).$$

The following strengthening of Lemma 3 is necessary in the next section. Let B(X) denote the bounded Borel functions on X. Recall (5) $0 \le P_t^V u(x) \le +\infty$ is well-defined for $u \ge 0$ Borel, for all $x \in X$.

Lemma 4. Fix $V \in C(X)$ and $\mu \in M(X)$. Let u > 0 Borel satisfy $\log u \in L^1(\mu)$. Then for $t \ge 0$,

$$(14) tI^{V}(\mu) + \int_{Y} \log^{+} \left(\frac{e^{-\lambda_{V} t} P_{t}^{V} u}{u} \right) d\mu \ge \int_{Y} \log^{-} \left(\frac{e^{-\lambda_{V} t} P_{t}^{V} u}{u} \right) d\mu.$$

Here the integrals may be infinite.

Proof. We may assume $I^{V}(\mu) < \infty$, otherwise (14) is true.

Let u > 0 be Borel with $\log u \in L^1(\mu)$. We establish (14) in three stages, first for $\log u \in B(X)$, then for $\log u$ bounded below, then in general. Let $Q_t = e^{-\lambda_V t} P_t^V$, t > 0

Suppose $|\log u| \le M$ and suppose $u_n > 0$, $n \ge 1$, satisfy $|\log u_n| \le M$, $n \ge 1$. If $u_n \to u$ pointwise on X, it follows that $Q_t u_n \to Q_t u$ pointwise on X. Assume (12) is valid for u_n , $n \ge 1$. Since by (10)

$$t(\min V - \lambda_V) - 2M \le \log\left(\frac{Q_t u_n}{u_n}\right) \le t(\max V - \lambda_V) + 2M, \quad n \ge 1,$$

it follows that (12) is valid for u. Thus the set of Borel f in B(X) with $u = e^f$ satisfying (12) is closed under bounded pointwise convergence. Since (12) is valid when $f = \log u \in C(X)$, it follows that (12) hence (14) is valid for all Borel u satisfying $\log u \in B(X)$. Here both sides of (14) are finite.

Next, assume $\log u$ in $L^1(\mu)$ and $u \geq \delta > 0$ and let $u_n = u \wedge n, n \geq 1$. Then

$$\log\left(\frac{Q_t u}{u}\right) \ge \log\left(\frac{Q_t u_n}{u}\right) = \log\left(\frac{Q_t u_n}{u_n}\right) + \log\left(\frac{u_n}{u}\right)$$

so

$$\log^+\left(\frac{Q_t u}{u}\right) \ge \log^-\left(\frac{Q_t u}{u}\right) + \log\left(\frac{Q_t u_n}{u_n}\right) + \log\left(\frac{u_n}{u}\right).$$

Hence

$$\int_X \log^+ \left(\frac{Q_t u}{u}\right) d\mu \ge \int_X \log^- \left(\frac{Q_t u}{u}\right) d\mu - tI^V(\mu) + \int_{u>n} (\log n - \log u) d\mu.$$

Discarding the log n term and passing to the limit $n \to \infty$ yields (14). Note $u \ge \delta$ and (10) imply

$$\log^{-}\left(\frac{Q_{t}u}{u}\right) = \log^{+}\left(\frac{u}{Q_{t}u}\right) \le |\log u| + (\lambda_{V} - \min V)t + \log\frac{1}{\delta}$$

so the right side of (14) is finite in this case and in fact (12) is valid.

Now assume $\log u$ in $L^1(\mu)$ and let $u_{\delta} = u \vee \delta$. Then

$$\log^{+}\left(\frac{Q_{t}u_{\delta}}{u}\right) = \log^{-}\left(\frac{Q_{t}u_{\delta}}{u}\right) + \log\left(\frac{Q_{t}u_{\delta}}{u_{\delta}}\right) + \log\left(\frac{u_{\delta}}{u}\right)$$

so

$$\int_{X} \log^{+} \left(\frac{Q_{t} u_{\delta}}{u} \right) d\mu \ge \int_{X} \log^{-} \left(\frac{Q_{t} u_{\delta}}{u} \right) d\mu - t I^{V}(\mu) + \int_{u < \delta} \log \left(\frac{\delta}{u} \right) d\mu$$

hence

(15)
$$tI^{V}(\mu) + \int_{X} \log^{+} \left(\frac{Q_{t}u_{\delta}}{u}\right) d\mu \ge \int_{X} \log^{-} \left(\frac{Q_{t}u_{\delta}}{u}\right) d\mu,$$

where we discarded the right-most integral as its integrand is nonnegative. To establish (14), we pass to the limit $\delta \downarrow 0$ in (15). We may assume

$$\int_X \log^+ \left(\frac{Q_t u}{u}\right) d\mu < \infty,$$

otherwise (14) is true. This implies $\log^+(Q_t u/u)(x) < \infty$ for μ -a.a x which implies $Q_t u(x) < \infty$ for μ -a.a. x. Since $u_{\delta} \leq u+1$ for $\delta < 1$, it follows by the dominated convergence theorem that $Q_t u_{\delta} \to Q_t u$ a.e. μ as $\delta \downarrow 0$.

Since

$$\log^-\left(\frac{Q_t u_\delta}{u}\right), \qquad \delta > 0,$$

increases as $\delta \downarrow 0$, the right side of (15) converges to the right side of (14). Using $2\log^+(a+b) \leq 2\log 2 + \log^+ a + \log^+ b$, (10), and $u_\delta \leq u+1$ for $\delta < 1$, we have

$$2\log^+\left(\frac{Q_t u_\delta}{u}\right) \le 2\log 2 + \log^+\left(\frac{Q_t u}{u}\right) + |\log u| + t(\max V - \lambda_V),$$

hence the dominated convergence theorem shows the left side of (15) converges to the left side of (14).

Let $P_t^{V,\psi}$ be as in (6).

Corollary 1. Fix $V \in C(X)$, $\mu \in M(X)$, let $\log \psi \in L^1(\mu)$, and let u > 0 Borel satisfy $\log u \in L^1(\mu)$. Then for $t \geq 0$,

(16)
$$tI^{V}(\mu) + \int_{X} \log^{+} \left(\frac{P_{t}^{V,\psi} u}{u} \right) d\mu \ge \int_{X} \log^{-} \left(\frac{P_{t}^{V,\psi} u}{u} \right) d\mu.$$

Here the integrals may be infinite.

Proof. Since $\log \psi$ is in $L^1(\mu)$, $\log(u\psi)$ is in $L^1(\mu)$ iff $\log u$ is in $L^1(\mu)$. Now apply Lemma 4.

Corollary 2. Let $V \in C(X)$ and $\log \psi \in L^1(\mu)$. Then $\mu \in M(X)$ is an equilibrium measure for V iff

$$\int_{X} \log^{+} \left(\frac{P_{t}^{V,\psi} u}{u} \right) d\mu \ge \int_{X} \log^{-} \left(\frac{P_{t}^{V,\psi} u}{u} \right) d\mu$$

for $t \ge 0$ and u > 0 satisfying $\log u \in L^1(\mu)$.

Proof. If μ is an equilibrium measure, $I^V(\mu)=0$ so the result follows from Corollary 1. Conversely, assume the inequality holds for all u>0 satisfying $\log u\in L^1(\mu)$. For $u\in C^+(X)$, the function u/ψ satisfies $\log(u/\psi)\in L^1(\mu)$. Inserting u/ψ in the inequality yields

$$\int_X \log^+ \left(\frac{e^{-\lambda_V t} P_t^V u}{u} \right) \, d\mu \geq \int_X \log^- \left(\frac{e^{-\lambda_V t} P_t^V u}{u} \right) \, d\mu.$$

For u in $C^+(X)$, the integrals are finite hence

$$\int_X \log \left(\frac{e^{-\lambda_V t} P_t^V u}{u} \right) d\mu \ge 0.$$

For $u \in \mathcal{D}^+$, with $Q_t = e^{-\lambda_V t} P_t^V$, $t \geq 0$, we have $Q_t u \in \mathcal{D}^+$ so

$$Q_t u = u + t(L + V - \lambda_V)u + o(t), \qquad t \to 0.$$

$$\frac{Q_t u}{u} = 1 + t \frac{(L + V - \lambda_V)u}{u} + o(t), \qquad t \to 0,$$

$$\log\left(\frac{Q_t u}{u}\right) = t \frac{(L + V - \lambda_V)u}{u} + o(t), \qquad t \to 0,$$

all uniformly on X. Hence dividing by t and sending $t \to 0$ yields

$$\int_X \frac{(L+V-\lambda_V)u}{u} \, d\mu \ge 0.$$

This implies $I^{V}(\mu) \leq 0$, hence $I^{V}(\mu) = 0$.

A strongly continuous positive semigroup on $L^1(\mu)$ is a semigroup P_t , $t \geq 0$, of bounded operators on $L^1(\mu)$ preserving positivity $P_t f \geq 0$ a.e. μ , for $f \geq 0$ a.e. μ , $t \geq 0$, and satisfying $\|P_t f - f\|_{L^1(\mu)} \to 0$ as $t \to 0+$. A Markov semigroup on $L^1(\mu)$ is a strongly continuous positive semigroup on $L^1(\mu)$ satisfying $P_t 1 = 1$ a.e. μ , $t \geq 0$.

Lemma 5. Let $V \in C(X)$ and suppose π and μ are measures with $\mu << \pi$, and let $\psi = d\mu/d\pi$. If π is a ground measure for V, then $P_t^{V,\psi}|f|(x) < \infty$ for μ -a.a. x and f in $L^1(\mu)$, $P_t^{V,\psi}$, $t \geq 0$, is a strongly continuous positive semigroup on $L^1(\mu)$, and

(17)
$$\mu(P_t^{V,\psi}f) = \mu(f), \qquad t \ge 0,$$

for f in $L^1(\mu)$. If ψ is a ground state for V relative to μ , $P_t^{V,\psi}$, $t \geq 0$, is a Markov semigroup on $L^1(\mu)$.

Proof. If π is a ground measure, for f in C(X) we have

$$||e^{-\lambda_V t} P_t^V f||_{L^1(\pi)} = \int_X |e^{-\lambda_V t} P_t^V f| d\pi$$

$$\leq \int_X e^{-\lambda_V t} P_t^V |f| d\pi = \int_X |f| d\pi = ||f||_{L^1(\pi)}.$$

Hence $e^{-\lambda_V t} P_t^V$, $t \ge 0$, satisfies

(18)
$$||e^{-\lambda_V t} P_t^V f||_{L^1(\pi)} \le ||f||_{L^1(\pi)}, \qquad t \ge 0,$$

for f in C(X). Since the collection of functions f satisfying (18) is closed under bounded pointwise convergence, (18) is valid for $f \in B(X)$. Inserting $f \wedge n$ with f nonnegative Borel and sending $n \to \infty$, (18) is then valid for nonnegative Borel f. It follows that $e^{-\lambda_V t} P_t^V |f|(x) < \infty$, π -a.a. x, for f in $L^1(\pi)$, hence $e^{-\lambda_V t} P_t^V$, $t \ge 0$, are well-defined contractions on $L^1(\pi)$. By (18) and the density of C(X) in $L^1(\pi)$, this implies $\pi(e^{-\lambda_V t} P_t^V f) = \pi(f)$, $t \ge 0$, for f in $L^1(\pi)$ and implies $e^{-\lambda_V t} P_t^V$, $t \ge 0$, is a strongly continuous positive semigroup on $L^1(\pi)$.

Since $\psi \in L^1(\pi)$, (17) follows for $f \in C(X)$. But (18) for f nonnegative Borel implies

(19)
$$||P_t^{V,\psi}f||_{L^1(\mu)} \le ||f||_{L^1(\mu)}, \qquad t \ge 0,$$

for f nonnegative Borel, hence $P_t^{V,\psi}|f|(x)<\infty,\ \mu$ -a.a. x, for f in $L^1(\mu),$ hence $P_t^{V,\psi},\ t\geq 0,$ are well-defined contractions on $L^1(\mu).$ Moreover

$$\|P_t^{V,\psi}f-f\|_{L^1(\mu)}=\|e^{-\lambda_V t}P_t^V(f\psi)-f\psi\|_{L^1(\pi)}\to 0, \qquad t\to 0+, f\in C(X).$$

By (19) and the density of C(X) in $L^1(\mu)$, we conclude $P_t^{V,\psi}$, $t \geq 0$, is a strongly continuous positive semigroup on $L^1(\mu)$ and (17) holds for $f \in L^1(\mu)$.

If ψ is a ground state relative to μ , $P_t^{V,\psi}1=1$ a.e. μ . Thus in this case $P_t^{V,\psi}$, $t\geq 0$, is a Markov semigroup on $L^1(\mu)$.

4. Proofs of the Theorems

Proof of Theorem 1. For the first assertion, we have a ground measure π for V and a ground state ψ for V relative to μ satisfying $\log \psi \in L^1(\mu)$. Suppose $\log u \in L^1(\mu)$. Then $P_t^{V,\psi}|\log u|$ is in $L^1(\mu)$ and there is a set N with $\mu(N)=0$ and $P_t^{V,\psi}(|\log u|)(x)<\infty$ and $P_t^{V,\psi}(1x)=1$ for $x\not\in N$. Jensen's inequality applied to the integral $f\mapsto (P_t^{V,\psi}f)(x)$ (see (5)) implies

$$\log\left(\frac{P_t^{V,\psi}u}{u}\right)(x) \ge P_t^{V,\psi}(\log u)(x) - (\log u)(x), \qquad x \notin N,$$

hence for $x \notin N$,

$$\log^+\left(\frac{P_t^{V,\psi}u}{u}\right)(x) \ge \log^-\left(\frac{P_t^{V,\psi}u}{u}\right)(x) + P_t^{V,\psi}(\log u)(x) - (\log u)(x).$$

Integrating over X against μ , the integrals of the right-most two terms cancel by (17) hence by Corollary 2, μ is an equilibrium measure for V, establishing the first

For the second assertion, assume π is a ground measure for V and μ is an equilibrium measure for V. Note $\int P_t^{V,\psi} 1 \, d\mu < \infty$ so $\int \log^+ \left(P_t^{V,\psi} 1 \right) \, d\mu < \infty$. By

Corollary 2, it follows that $\int \log^- \left(P_t^{V,\psi} 1 \right) d\mu < \infty$, hence $\log \left(P_t^{V,\psi} 1 \right)$ is in $L^1(\mu)$. By Jensen's inequality, (17), and Corollary 2,

$$0 = \log(\mu(1)) = \log\left(\int_X P_t^{V,\psi} 1 \, d\mu\right) \ge \int_X \log(P_t^{V,\psi} 1) \, d\mu \ge 0.$$

Since log is strictly concave, this can only happen if $P_t^{V,\psi}1$ is μ a.e. constant. By (17), the constant is 1. Since $\psi > 0$ a.e. μ is immediate, this establishes the second assertion.

For the third assertion, assume μ is an equilibrium measure for V and ψ is a ground state for V relative to μ . Then $P_t^{V,\psi}1=1$ a.e. μ , so for $u\in C^+(X)$,

$$\frac{\min u}{\max u} \le \frac{P_t^{V,\psi} u}{u} \le \frac{\max u}{\min u}, \qquad a.e.\mu,$$

hence $\log(P_t^{V,\psi}u/u)$ is in $L^1(\mu)$ for $u \in C^+(X)$. By Corollary 2, for $f \in C(X)$,

$$\beta(\epsilon) \equiv \int_X \log \left(\frac{P_t^{V,\psi} e^{\epsilon f}}{e^{\epsilon f}} \right) d\mu \ge 0, \quad |\epsilon| < 1,$$

and $\beta(0) = 0$, hence $\dot{\beta}(0) = 0$. Differentiating at $\epsilon = 0$, we obtain

(20)
$$\int_X e^{-\lambda_V t} P_t^V(f\psi) d\pi = \int_X f\psi d\pi$$

for $f \in C(X)$. Since the collection of functions f satisfying (20) is closed under bounded pointwise convergence, (20) holds for $f \in B(X)$. Now for $f \in C(X)$, $f_{\epsilon} \equiv f\psi/(\psi+\epsilon) \to f$ boundedly as $\epsilon \downarrow 0$, thus replacing f by $f/(\psi+\epsilon)$ in (20) and letting $\epsilon \downarrow 0$ establishes (4), hence π is a ground measure for V. This establishes the third assertion.

For μ, π in M(X), the entropy of μ relative to π is

$$H(\mu, \pi) \equiv \sup_{V} \left(\int_{X} V \, d\mu - \log \int_{X} e^{V} \, d\pi \right)$$

where the supremum is over V in C(X).

Lemma 6. $H(\mu, \pi) \ge 0$ is finite iff $\mu \ll \pi$ and $\psi = d\mu/d\pi$ satisfies $\log \psi \in L^1(\mu)$, in which case

$$H(\mu, \pi) = \int_X \log \psi \, d\mu = \int_X \psi \log \psi \, d\pi.$$

Moreover H is lower-semicontinuous and convex separately in each of μ and π .

This is Lemma 2.1 in [5].

Proof. The lower-semicontinuity and convexity follow from the definition of H as a supremum of convex functions, in each variable π , μ separately. Suppose $H(\mu, \pi) < \infty$. Since the set of V in B(X) satisfying

$$\int_X V \, d\mu - \log \int_X e^V \, d\pi \le H(\mu, \pi)$$

contains C(X) and is closed under bounded pointwise convergence, it equals B(X). Insert $V = r1_A$ into this inequality, where $\pi(A) = 0$, obtaining

$$r\mu(A) < r\mu(A) - \log(\pi(A^c)) < H(\mu, \pi).$$

Let $r \to \infty$ to conclude $\mu \ll \pi$. Since $\psi = d\mu/d\pi \in L^1(\pi)$, let $0 \le f_n \in C(X)$ with $f_n \to \psi$ in $L^1(\pi)$. By passing to a subsequence, assume $f_n \to \psi$ a.e. π . Insert $V = \log(f_n + \epsilon)$ into the definition of H to yield

$$\int_{X} \log(f_n + \epsilon) d\mu - \log \int_{X} (f_n + \epsilon) d\pi \le H(\mu, \pi).$$

Let $n \to \infty$; by Fatou's lemma,

$$\int_X \psi \log(\psi + \epsilon) d\pi - \log \int_X (\psi + \epsilon) d\pi \le H(\mu, \pi).$$

Since $\pi(\psi + \epsilon) = 1 + \epsilon$, applying Fatou's lemma again as $\epsilon \to 0$, $\int_X \psi \log \psi \, d\pi \le H(\mu, \pi)$.

Conversely, suppose $\psi = d\mu/d\pi$ exists and $\psi \log \psi \in L^1(\pi)$. By Jensen's inequality,

$$\int_X V \, d\mu \le \log \int_X e^V \, d\mu, \qquad V \in B(X).$$

Replace V by $V - \log(\psi \wedge n + \epsilon)$ to get

$$\int_X V \, d\mu - \log \int_X \left(\frac{e^V \psi}{\psi \wedge n + \epsilon} \right) \, d\pi \le \int_X \psi \log(\psi \wedge n + \epsilon) \, d\pi.$$

Let $\epsilon \to 0$ followed by $n \to \infty$ obtaining

$$\int_X V \, d\mu - \log \int_X e^V \, d\pi \le \int_X \psi \log \psi \, d\pi.$$

Now maximize over V in C(X) to conclude $H(\mu, \pi) \leq \int_X \psi \log \psi \, d\pi$.

Proof of Theorem 2. By (12),

$$\int_X \log \left(\frac{e^{-\lambda_V t} P_t^V u}{u} \right) d\mu \ge -t I^V(\mu), \qquad u \in C^+(X).$$

Thus for $f \in C(X)$,

$$\int_X f \, d\mu - \int_X \log \left(e^{-\lambda_V t} P_t^V e^f \right) \, d\mu \le t I^V(\mu), \qquad f \in C(X).$$

By Jensen's inequality.

$$\int_X f \, d\mu - \log \int_X \left(e^{-\lambda_V t} P_t^V e^f \right) \, d\mu \le t I^V(\mu), \qquad f \in C(X).$$

Defining

$$\mu_t(f) = e^{-\lambda_V t} \mu(P_t^V f)$$

and

$$\pi_t(f) = \frac{\mu_t(f)}{\mu_t(1)}$$

yields

$$\int_X f \, d\mu - \log \int_X e^f \, d\pi_t \le t I^V(\mu) + \log \mu_t(1), \qquad f \in C(X).$$

Taking the supremum over all f yields

$$H(\mu, \pi_t) \le tI^V(\mu) + \log \mu_t(1).$$

Note $\mu_t(1) < C$, t > 0, hence

$$H(\mu, \pi_t) \le tI^V(\mu) + \log C, \qquad t \ge 0.$$

Now set

$$\bar{\pi}_T = \frac{\int_0^T \mu_t \, dt}{\int_0^T \mu_t(1) \, dt} = \frac{\int_0^T \mu_t(1) \pi_t \, dt}{\int_0^T \mu_t(1) \, dt}, \qquad T > 0.$$

Then π_t is in M(X) for t > 0, $\bar{\pi}_T$ is in M(X) for T > 0.

Now assume μ is an equilibrium measure for V; then $I^{V}(\mu) = 0$. By convexity of H.

$$H(\mu, \bar{\pi}_T) \le \log C, \qquad T > 0.$$

By compactness of M(X), select a sequence $T_n \to \infty$ with $\pi_n = \bar{\pi}_{T_n}$ converging to some π . By lower-semicontinuity of H, we have $H(\mu, \pi) \leq \log C$. Thus $\mu << \pi$ with $\psi = d\mu/d\pi$ satisfying $\psi \log \psi \in L^1(\pi)$. Since

$$\log \mu(e^{-\lambda_V t} P_t^V 1) \ge \mu(\log(e^{-\lambda_V t} P_t^V 1)) \ge 0,$$

we have $\mu_t(1) \geq 1$, $t \geq 0$. This is enough to show

$$\pi_n\left(e^{-\lambda_V T} P_T^V f\right) = \pi_n(f) + o(1), \qquad n \to \infty,$$

for all T>0. Thus π is a ground measure for V. By Theorem 1, ψ is a ground state for V relative to μ . The remaining assertions are in Lemma 5.

We establish two lemmas used in the proof of Theorem 3.

Lemma 7. Let $V \in C(X)$. Under assumption (A), (7) holds.

This is Lemma 4.3.1 in [3].

Proof. Let T>0 and $\epsilon>0$ be as in (A). By (10), for $t\geq 0$,

$$\begin{split} P_T P_t^V \mathbf{1} & \leq & e^{-T \min V} P_T^V P_t^V \mathbf{1} = e^{-T \min V} P_t^V P_T^V \mathbf{1} \\ & \leq & e^{T (\max V - \min V)} P_t^V P_T \mathbf{1} = e^{T (\max V - \min V)} P_t^V \mathbf{1}. \end{split}$$

Similarly, one has

$$P_T P_t^V 1 \ge e^{T(\min V - \max V)} P_t^V 1$$

hence

$$e^{T(\max V - \min V)} P_t^V \mathbf{1} \ge P_T P_t^V \mathbf{1} \ge e^{T(\min V - \max V)} P_t^V \mathbf{1}.$$

Let $\epsilon' = \epsilon e^{2T(\min V - \max V)}$. By (A) this implies

$$P_t^V 1(x) \ge \epsilon' P_t^V 1(y), \qquad x, y \in X,$$

hence

$$||P_t^V|| = \sup_x P_t^V 1(x) \ge \phi(t) \equiv \inf_x P_t^V 1(x) \ge \epsilon' ||P_t^V||, \qquad t \ge 0$$

But $\phi(t)$ is supermultiplicative so

$$\sup_{t>0} \frac{1}{t} \log \phi(t) = \lim_{t\to\infty} \frac{1}{t} \log \phi(t) \le \lim_{t\to\infty} \frac{1}{t} \log ||P_t^V|| = \lambda_V.$$

Since $\epsilon' \| P_t^V \| \le \phi(t)$, this implies (7) with $C \le 1/\epsilon'$.

Lemma 8. Under assumption (A), the ground state ψ in Theorem 2 may be chosen such that $\log \psi$ is in B(X). If moreover (B) holds, $\operatorname{supp}(\mu) = X$. If moreover (C) holds and V is smooth, ψ may be chosen in \mathcal{D}^{∞} and strictly positive, and satisfies

$$L\psi + V\psi = \lambda_V \psi.$$

Proof. With T and ϵ as in (A), let $Q_T = e^{-\lambda_V T} P_T^V$ and $\epsilon' = \epsilon e^{T(\min V - \max V)}$. Then $Q_T \psi = \psi$ a.e. μ . By (A) and (10) we have

(21)
$$Q_T|f|(x) \ge \epsilon' Q_T|f|(y), \qquad x, y \in X,$$

for all $f \in C(X)$. Since the collection of functions f satisfying (21) is closed under bounded pointwise convergence, (21) is valid for $f \in B(X)$. Hence

$$Q_T\psi(x) > Q_T(\psi \wedge n)(x) > \epsilon' Q_T(\psi \wedge n)(y), \qquad x, y \in X.$$

Let $\tilde{\psi} \equiv Q_T \psi$. Sending $n \to \infty$ yields

(22)
$$\tilde{\psi}(x) \ge \epsilon' \tilde{\psi}(y), \quad x, y \in X.$$

Since ψ is a ground state, $\tilde{\psi} = \psi$ a.e. μ . Since $0 < \psi < \infty$ a.e. μ , we have $0 < \tilde{\psi} < \infty$ a.e. μ hence (22) implies $\tilde{\psi}$ is bounded away from zero and away from infinity, i.e. $\log \tilde{\psi}$ is in B(X). Since $d\pi = d\mu/\psi = d\mu/\tilde{\psi}$, Theorem 1 implies $\tilde{\psi}$ is a ground state. Thus we may replace ψ by $\tilde{\psi}$ and assume $\log \psi \in B(X)$.

With T>0 as in (B), $f\in C(X)$ nonnegative implies

$$\mu(f) = \mu(P_T^{V,\psi}f) \ge \frac{\inf \psi}{\sup \psi} e^{T(\min V - \lambda_V)} \mu(P_T f) > 0.$$

Hence $supp(\mu) = X$.

Now let $\tilde{\psi} \equiv Q_T \psi$ and assume V is smooth. Then $\tilde{\psi} = \psi$ a.e. μ hence as before $\tilde{\psi}$ is a ground state. Since $\tilde{\psi} \in \mathcal{D}^{\infty}$, we may replace ψ by $\tilde{\psi}$ and assume $\psi \in \mathcal{D}^{\infty}$.

Since $\operatorname{supp}(\mu) = X$, $e^{-\lambda_V t} P_t^V \psi = \psi$, $t \geq 0$, holds identically on X, hence ψ is strictly positive. Differentiating this yields $L\psi + V\psi = \lambda_V \psi$.

Proof of Theorem 3. Let $\psi_i \in \mathcal{D}^{\infty}$ be the strictly positive ground states for V_i relative to μ , i=1,2, given by Lemma 8. Since μ is $P_t^{V_i,\psi_i}$ -invariant, i=1,2, differentiating (17) yields

$$0 = \int_X \frac{L(\psi_i f)}{\psi_i} + V_i f - \lambda_{V_i} f \, d\mu = \int_X \left(\frac{L(\psi_i f)}{\psi_i} - f \frac{L\psi_i}{\psi_i} \right) \, d\mu = \int_X \frac{1}{\psi_i} [L, f] \psi_i \, d\mu,$$

for $f \in \mathcal{D}^{\infty}$, for i = 1, 2. Subtract these two equations and insert $f = \psi_1/\psi_2$ to get

$$\int_X \frac{1}{\psi_1} \left[\left[L, \frac{\psi_1}{\psi_2} \right], \frac{\psi_1}{\psi_2} \right] \psi_2 \, d\mu = 0.$$

But $\psi_2 \ge \min \psi_2$ so by Lemma 2 applied with $f = \psi_2 - \min \psi_2$,

$$\frac{1}{\psi_1} \left[\left[L, \frac{\psi_1}{\psi_2} \right], \frac{\psi_1}{\psi_2} \right] \psi_2 \ge \frac{\min \psi_2}{\max \psi_1} \Gamma \left(\frac{\psi_1}{\psi_2} \right) \ge 0$$

SC

$$\int_{V} \Gamma(\psi_1/\psi_2) \, d\mu = 0.$$

Since supp $(\mu) = X$, $\Gamma(\psi_1/\psi_2) \equiv 0$ which yields by (D) $\psi_1 = c\psi_2 \equiv \psi$. Thus we arrive at $L\psi + V_i\psi = \lambda_{V_i}\psi$ for i = 1, 2. Subtracting yields the result.

References

- S. Aida, Uniform Positivity Improving Property, Sobolev Inequalities, and Spectral Gaps, J. Functional Analysis 158 (1998), 152–185.
- D. Bakry, Functional inequalities for Markov semigroups, Probability measures on groups, 2004.
- [3] J.-D. Deuschel and D. W. Stroock, *Large Deviations*, Pure and Applied Mathematics Series, vol. 137, Academic Press, 1984.
- [4] M. D. Donsker and S. R. S. Varadhan, On a variational formula for the principal eigenvalue for operators with maximum principle, Proceedings of the National Academy of Sciences USA 72 (1975), 780–783.
- [5] ______, Asymptotic evaluation of certain Markov process expectations for large time, I, Communications on Pure and Applied Mathematics XXVIII (1975), 1–47.
- [6] S. Friedland, Convex spectral functions, Linear and Multilinear Algebra 9 (1981), 299-316.
- [7] L. Gross, Existence and uniqueness of physical ground states, J. Func. Anal. 10 (1972), 52-109.
- [8] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B 136 (1964), 864-871.
- [9] E. H. Lieb, Density Functionals for Coulomb Systems, International Journal for Quantum Chemistry XXIV (1983), 243–277.
- [10] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996), 3865–3868.
- [11] B. Simon, Schrodinger Semigroups, Bulletin AMS 7 (1982), 447-526.

Department of Mathematics, Temple University, Philadelphia, PA 19122 $E\text{-}mail\ address:$ hijab@temple.edu