THE HOHENBERG-KOHN THEOREM FOR MARKOV
SEMIGROUPS

OMAR HIJAB

ABSTRACT. At the basis of much of computational chemistry is density func-
tional theory, as initiated by the Hohenberg-Kohn theorem. The theorem
states that, when nuclei are fixed, electronic systems are determined by 1-
electron densities. We recast and derive this result within the context of
Markov semigroups.

1. INTRODUCTION

In quantum mechanics, the probability distribution of the ground state of an N-
electron system' is a permutation-symmetric probability measure p on R3*V, and
its 1-electron marginal is the probability measure p on R? given by

/ fdp:/‘ flx1)du(z, ..., zN).
R3 R3N

The potential acting on the electrons is a sum Vy + V of potentials, where V) is the
repulsive Coulomb potential between electrons, and V is the attractive nuclear or
external potential®

v(z1) + - +v(zN)
N )
for some function v on R3. The system is specified by the external potential v, as
Vb is the same for all N-electron systems.
Then the electronic ground state energy is given by

(1) V(.Z‘l,...,(EN):

(2) EVo+V)= i{},f/ (lgrad ¥|* + Vou* + Voo®) day ... dzy,
RSN

where the infimum is over all real v satisfying [ W2dxy ...dzy =1, and the distri-
bution corresponding to the ground state v is dy = 2 dx; ...dzy.

The Hohenberg-Kohn theorem [8] states that the external potential v — and
thus the electronic system — is determined by the marginal p: If py, po are dis-
tributions of ground states 11, ¥y corresponding to external potentials vy, vo, and
their marginals agree, p; = p2, then v; — v is a constant. The thrust of the theorem
is to reduce the study of electronic systems from 3N variables down to 3 variables.
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1An atom, molecule, or solid where nuclei are fixed.

2The 1/N normalization is not standard.
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In this paper we generalize this result from the above electronic setting to the
general (non-self-adjoint) Markov semigroup setting. To help simplify matters,
instead of R3, we take a compact metric space X as our position space.

Let X be a compact metric space and let P, t > 0, be a Markov semigroup
on C(X) with generator L defined on its dense domain D C C(X). Examples of
semigroups which satisfy all our assumptions below are

e X is a compact manifold and L is a nondegenerate elliptic second order
differential operator with smooth coefficients, given by

>*f of
Lf(e) = aig(a) 5=+ D bila) 52
in local coordinates.
e X ={1,...,d} and L is a d xd matrix with nonnegative off-diagonal entries
whose row-sums vanish and whose adjacency graph is connected.

Given V in C(X), let P/, ¢t > 0, denote the Schrodinger semigroup on C(X)
generated by L + V. Then the principal eigenvalue

1
Ay = lim = log|| PV
v t%rorétog\lt\l

exists and is given by the Donsker-Varadhan formula [4]

3) v =sup ([ V- 10)

where the supremum is over all probability measures p on X and

I(p) = — inf/&d,u.
b'e

uweD+ u

Here the infimum is over all positive w in D. In the electronic case, (3) reduces to
(2) and Ay = —E(-V).

Given f € C(X) and a probability measure p on X, let u(f) denote the integral
of f against p. Let M(X) denote the space of probability measures on X, and let
V be in C(X).

An equilibrium measure for V is a u € M(X) achieving® the supremum in (3),
Av = (V) = I(p).

A ground measure for V is a m € M(X) satisfying
(4) / e‘A"tPtVfdﬂz/ fdr, t>0,f€C(X).
X X
By positivity,

(5) Py f(z) = /X PV (¢ z,dy) £ ()

for some family (¢,z) — pY(¢,z,-) of bounded positive measures on X. Thus
0 < PV f(x) < +oco is well-defined for f nonnegative Borel on X. Let u be in
M(X).

3The supremum is always achieved as I is lower semicontinuous (Lemma 1).
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A ground state for V relative to p is a nonnegative Borel function ¢ on X
satisfying ¢ > 0 a.e. p and

e_’\VtPtvw =1, a.e.pu,t > 0.

Thus a ground state ¥ plays the role of a right eigenvector for L+V, and a ground
measure 7 plays the role of a left eigenvector for L 4+ V', both with eigenvalue Ay .

When N = 1, the Hohenberg-Kohn theorem states that if p is the distribution of
a ground state ¥ corresponding to V; and to V5, then V3 — V5 is a constant. In the
electronic case, dy = 12 dz and this is an immediate consequence of the Schrodinger
equations L+ Viyp = Ay,4, ¢ = 1,2. In the general case, however, establishing this
turns out to be the heart of the matter, as the correspondence between equilibrium
measures i and ground states 1 is not as direct. The following sheds light on the
relation between pu, ¥, and 7.

Theorem 1. Let u,m € M(X) and let V € C(X). Suppose p << m and suppose
Y = dp/dn satisfies logy € L*(u). Then the following hold.

(1) If v is a ground state for V relative to u and w is a ground measure for V,
then p is an equilibrium measure for V.

(2) If 7 is a ground measure for V and p is an equilibrium measure for V., then
¥ is a ground state for V relative to p.

(8) If pis an equilibrium measure for V and v is a ground state for V relative
to u, then w is a ground measure for V.

In the electronic case, L is self-adjoint relative to dx; ...dxn, so heuristically a
right eigenvector is a left eigenvector, so by Theorem 1, a ground state i leads to
a ground measure dr = ¥ dx; ...dxr N and to an equilibrium measure dy = ¥ dr =
Y2dxy ... dey.

Given 1 nonnegative, let

©) pyy - VY

(G
Then P*Y f(x) is defined at a point z if PY (|f]¥)(z) < oo and (z) > 0.

Theorem 2. Fiz V € C(X) and suppose
(7) C =sup (e MPY|) < oo,
>0

and let p be an equilibrium measure for V. Then there is a ground state 1 for V
relative to p and a ground measure ™ for V such that
o log € L' (),
o u << anddu/dr =1, and
. PtV’w, t > 0, is a Markov semigroup on L'(u), and p is PtV’w, t >0,
imvariant

[Presan= [ fan sertazo
X X

Note this existence result is not just a Perron-Frobenius result, as ¢ and 7 are
determined subordinate to the given equilibrium measure p.

Now we list our assumptions on the Markov semigroup P;, t > 0.

We assume a strong uniformity condition
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(A) There is a T > 0 and an € = €(T) > 0 such that Pr|f|(x) > ePr|f|(y) for
all z,y € X and f € C(X).

As we shall see, (A) implies (7). We also assume

(B) There is a T' > 0 such that f > 0 in C(X) implies Prf > 0 everywhere in
X.

A core for P;, t > 0, is a subspace D> C D whose closure in the graph norm
Il £]l + IILf|| equals D. We assume
(C) There is a core D> that is closed under multiplication and division: If
f,g € D™ then fg € D>, and if moreover g > 0, then f/g € D>.

Let [A, B] = AB — BA denote the bracket of operators A, B. Given g € C(X),
let g also denote the corresponding multiplication operator on C(X). Then (Lemma
2) the double bracket [[L, g], g] is a positive operator

fyfg, fg* € D and f > 0 implies [[L, ], g]f > 0.

The square-field operator is

P(g) =IIL.gl.g]1 = L(g*) —29Lg g €D™.

By the positivity of the double bracket, I'(g) > 0. We assume the nondegeneracy
condition

(D) If g € D> and I'(g) = 0, then g is a constant.

Let B(X) denote the bounded Borel functions on X. We say a potential V' is
smooth if P} maps B(X) into D> for ¢ > 0. This depends on both L and V.

For the examples above, (A) and (B) are valid, and (C) and (D) are valid if we
take D> = C*°(X), and V is smooth in the above sense if V' is in C*°(X) (for the
second example, C*(X) = C(X) = B(X) equals all functions on X).

Theorem 3. Assume (A), (B), (C), (D) and let V1, Va be smooth potentials. If i
is an equilibrium measure for Vi and for Vs, then Vi3 — Vs is a constant.

This result should hold more broadly, in which case one should obtain V; —V5 is a
constant on the support of . This restriction is natural because one cannot expect
to determine the potential in regions outside the electron cloud. The more general
result is easily verified when L = 0 for any V1, V5 € C(X), so nondegeneracy should
not play a role in a broader formulation. A discrete time version of Theorem 3 in
the case X = {1,...,d} is in [6].

Note that p is an equilibrium measure for V' iff V' is a subdifferential of I at p,
ie. iff

I(wv) > I(pw) +v(V) — w(V), ve M(X).
Subdifferentials at a given u need not exist. When subdifferentials do exist, The-
orem 3 provides conditions under which uniqueness holds at the given u, up to a
constant.

Next we look at Markov semigroups on C'(X™").

Let N > 1 and X¥ be the N-fold product of X. Let P, t > 0, be a Markov
semigroup on C(X?), representing the motion of N particles, and let L be its
generator. Let P, t > 0,1 < i < N, be Markov semigroups on C(X). When P,
t > 0, is the product of P, t > 0, 1 < i < N, with the i-th semigroup acting on
the i-th component in C(X%),

(Pif)(z1,...,an) = PH(f(z1, o iy gt N)) (24), 1<i<N,
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we have non-interacting particles. When the semigroups P}, t > 0, 1 <i < N, are
the same, we have identical non-interacting particles. If V(z1,...,zy) is a potential
in C(X™), particle interactivity is then modelled by the Schrodinger semigroup P\,
t >0, on C(XN).

If (A) holds for single particle Markov semigroups P, t > 0, 1 < i < N, on
C(X), then (A) holds (with e replaced by €V) for the product Markov semigroup
P, t >0, on C(XY), corresponding to non-interacting particles. Similarly for (B).
If (C) and (D) hold for P}, t>0,1 <4< N, on C(X), then (C) and (D) hold for
the product Markov semigroup P;, t > 0, on C(X), assuming D>°(X") can be
chosen to be a tensor product of D*(X) in a suitable sense. This is the case for
the examples above when D>®°(XV) = C>(XY) and D®(X) = C®(X).

A potential V in C(X?) is separable if it is of the form (1) for some v in C'(X).
We are interested in Schrodinger semigroups on C'(X™) with generators of the form
L+ Vy+V with Vo,V in C(X") and V separable.

Given f € C(X") and a permutation o of (1,...,N), let

fo(z1, ..., zen) = f(To1,- -, TonN)-
Given a measure g on X7, let u° be the measure with action u?(f) = u(f?). A
potential V on X is symmetric if Vo = V and a measure p on X% is symmetric
if u = p, both for all permutations o.

Let P, t > 0, be a Markov semigroup on C(X*) with generator L. We say the
semigroup P, t > 0, is symmetric if (P.f)? = P,f?, t > 0, for all permutations
o. When the semigroup is symmetric and V is symmetric, we can restrict the
supremum in (3) (with X replaced by X*) to symmetric measures. As before, if p
is a symmetric probability measure on X, its 1-particle marginal is the probability
measure p on X satisfying

/fdpz/ fz) dp(z, ..., zN), fel(X).
X XN

Note for p symmetric with marginal p and V separable, we have u(V) = p(v).
Here is the Hohenberg-Kohn theorem in this setting.

Theorem 4. Let P, t > 0 be a Markov semigroup on C(X™) satisfying (A), (B),
(C), (D) and let Vi be a potential and Vi, Va separable potentials, all in C(X),
with Vi, Va, arising from vy, vy in C(X). Assume Vo + Vi and Vo + Va are smooth.
Let py, po be symmetric equilibrium measures for Vo + Vi, Vo + Vo and let p1, p2
denote their 1-particle marginals. Then py = p2 implies v1 — vo is constant.

For example this applies if V{, is symmetric and P, ¢ > 0, corresponds to non-
interacting identical particles.
The proof of this is so short we present it right away.

Proof of Theorem 4. If p, is an equilibrium measure for Vy + V5, then by Theorem
3, Vi = Vo = (Vo + V1) — (Vo + Vo) is constant on X%, but V; — V4 is separable,
hence v; — vy is constant on X. Otherwise, we have
(Vo +Va) = I(p1) < Avosve = Avgave — Avpvy +pa (Vo + V1) — 1)
which implies
p1(vz —v1) = (Ve = V1) < Avgavs — Avgans
hence
p1(v2 = v1) < AVpt+va — AVp41s -
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Reversing the roles of V;, V5,

p2(v1 — v2) < Avp+vi — AVp41s-

Since p; = po, this is a contradiction. O
Let I(p) correspond to a symmetric Markov semigroup on C(X?), and let V;,
V be in C(X¥) with V symmetric and V separable. Let

unctp) = ot (160~ [ Vaa).
H=rp XN

where the infimum is over all symmetric  in M(X?) with marginal p in M (X).

Then (3) written over M (X%) reduces to

sy =su ([ vy 160) =su ([ vdo~ ut).

Thus the computation of the principal eigenvalue is reduced to computing the
M (XN) universal object Igx followed by an optimization over M(X). In the
electronic case, density functional theory is the study of approximations of Irg [9],
[10].

The following sections contain the proofs of Theorems 1, 2, 3 and supporting
Lemmas. Many of the Lemmas are basic and go back to the early papers [4], [5]
and the book [3].

2. THE SCHRODINGER SEMIGROUP

Let X be a compact metric space, let C(X) denote the space of real continuous
functions with the sup norm ||-||, and let M (X) denote the space of Borel probability
measures with the topology of weak convergence. Then M (X) is a compact metric
space. Throughout p(f) denotes the integral of f against p.

A strongly continuous positive semigroup on C(X) is a semigroup P, t > 0,
of bounded operators on C(X) preserving positivity P,f > 0, for f > 0, ¢t > 0,
and satistying ||P;f — f|| — 0 as t — 0+. Then the C(X)-valued map t — P, f is
continuous on [0,00) for f € C(X). A Markov semigroup on C(X) is a strongly
continuous positive semigroup on C(X) satisfying P;1 =1, ¢ > 0.

Let CF(X) the strictly positive functions in C(X). Then P;f € C*(X) when
feCH(X).

The subspace D C C(X) of functions f € C(X) for which the limit

1
®) A, 7 (S =)

exists in C'(X) is dense. If Lf is defined to be this limit, then P;(D) C D, t > 0, the
C(X)-valued map ¢ — P, f is differentiable on (0,00) for f € D, and (d/dt)P.f =
L(P,f) = P(Lf), for f €D and t > 0.

Given V and f in C(X), the Schrodinger semigroup may be constructed as the
unique C(X)-valued continuous map t — u(t) = PY f, t > 0, satisfying

t
(9) u(t) = P f + /0 P._sVu(s)ds, t>0.

For f > 0, this implies
(10) VP < PYf<™VPf 120,
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which implies
minV < Ay <maxV.
Then PV, t > 0, is a strongly continuous positive semigroup on C(X), and the
limit
1y
(1) A, 5 (B2 =)

exists in C(X) if and only if f € D, in which case it equals (L + V) f. Moreover

PY(D) C D, t >0, the C(X)-valued map t — P f is differentiable on (0, 00) for

fe€D,and (d/dt)PY f = (L+V)(PYf)=PY(Lf+Vf), for f €D andt > 0.
Let DT be the strictly positive functions in D. For p in M(X), let

0 = 1)~ [ Vinaw =— inf (L+V = \)u

dp
ueDt Jx u

Then I°(u) = I(p) and IV () = 0 iff p is an equilibrium measure for V.

Lemma 1. For V in C(X), IV is lower semicontinuous, convez, and 0 < IV <
+o00. In particular, I is lower semicontinuous, convex, and 0 < I < 4o0.

Proof. Lower semicontinuity and convexity follow from the fact that I is the
supremum of continuous affine functions. The Donsker-Varadhan formula implies
IV is nonnegative. O

Lemma 2. If f,gf,g*f are in D and f >0, then [[L,g],g]f > 0.

Proof. Expanding

| ptta.d) 1) (o0) = o)
yields

Pi(fg°) —29Pi(fg) + g°P.f >0
hence

(Pi(fg®) = f9*) = 29(Pi(fg) — f9) + g*(P.f — ) > 0.
Dividing by ¢ and sending ¢t — 0+ yields
(L, g),91f = L(fg?) — 29L(fg) + ¢’Lf > 0. O

Note when P;, ¢ > 0, is a diffusion, e.g. our first example above, one has
[[L,9],9]f = f-T(g) is multiplication by the symbol of L, a standard characteriza-
tion of second-order differential operators.

For ¢t > 0 and w in C*(X), (10) implies

log (e_/\VtPtvu>

u
is in C(X).
Lemma 3. ForV in C(X), p € M(X), and u in CT(X),

—AvtPV
(12) / log (eut“> du > —tIV(p),  t>0.
X

The proof follows that of Lemma 3.1 in [5].
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Proof. By definition of IV (1),

L —-A

(13) / MdﬂZ*Iv(ﬂ), uw e Dt
D¢ U

When IV (1) = +o0, the result is valid, hence we may assume I" (u) < oco. For

t = 0, (12) is an equality. Moreover for ¢ > 0 and u € D, by (10) we have

e~ tPYu € DT and

d e MWEPYy (L+V = Ay)(e PV )
I -t - = t > —IV )
dt Jx o ( u ) du /X e MWEP u = (k)

This establishes (12) for u € Dt. Since DT is dense in C(X), (12) is valid for u
in O (X). O

3. EQUILIBRIUM MEASURES

Let L'(u) denote the p-integrable Borel functions on X with

1l = /X Fldu = n(1f))-

The following strengthening of Lemma 3 is necessary in the next section. Let
B(X) denote the bounded Borel functions on X. Recall (5) 0 < PYu(z) < +oo0 is
well-defined for v > 0 Borel, for all x € X.

Lemma 4. Fiz V € C(X) and p € M(X). Let u > 0 Borel satisfy logu € L'(u).
Then fort >0,

_)\VtPV —thPV
(14) tIV(u)—i—/ log* (et“) duz/ log™ (et“) dp.
X u X u

Here the integrals may be infinite.

Proof. We may assume I (1) < oo, otherwise (14) is true.

Let u > 0 be Borel with logu € L'(1z). We establish (14) in three stages, first for
logu € B(X), then for logu bounded below, then in general. Let Q; = e *v*PY,
t>0.

Suppose |logu| < M and suppose u, > 0, n > 1, satisfy |logu,| < M, n > 1. If
U, — u pointwise on X, it follows that Q;u,, — Q;u pointwise on X. Assume (12)
is valid for u,, n > 1. Since by (10)

t(minV — Ay) — 2M < log (Qt%) <t(maxV — Ay) + 2M, n>1,
Un

it follows that (12) is valid for u. Thus the set of Borel f in B(X) with u = e/
satisfying (12) is closed under bounded pointwise convergence. Since (12) is valid
when f = logu € C(X), it follows that (12) hence (14) is valid for all Borel u
satisfying logu € B(X). Here both sides of (14) are finite.

Next, assume logu in L'() and v > § > 0 and let u,, = u An, n > 1. Then

e (5] s () s (G1) s (3)
e (G) 2 (S) oms (G2) v ()

SO
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Hence

/Xl g (Qt ) du>/Xlog_ (Qutu) dut[v(u)nL/UNL(lognlogu)du.

Discarding the logn term and passing to the limit n — oo yields (14). Note u > ¢
and (10) imply

1
log™~ % =log™" v < |logu| + (A\v — min V')t + log —
u Qru o

so the right side of (14) is finite in this case and in fact (12) is valid.
Now assume logu in L'(u) and let us = u V 6. Then

log™ (Qt%) =log~ <Qtu6) + log <Qt 5) + log (U5)
u U u

S0
+ [ Quus _ [ Quus v 5
/XIOg (u) dMZ/Xlog ( " )du—tl (u)—i—/u<610g<U> du
hence
(15) )+ [ s (Qu“‘s> dn> [ 105 (Q;“‘s) s

where we discarded the right-most integral as its integrand is nonnegative. To
establish (14), we pass to the limit § L 0 in (15). We may assume

/lo (Qt>du<oo
X

otherwise (14) is true. This implies log™ (Qyu/u)(x) < oo for p-a.a x which implies
Qiu(z) < oo for p-a.a. x. Since us < u+ 1 for 6 < 1, it follows by the dominated
convergence theorem that Quus — Qu a.e. pas § ] 0.

Since
log™ (Qtu5> , 6 >0,
U

increases as ¢ | 0, the right side of (15) converges to the right side of (14). Using
2log™ (a +b) < 2log2 +logt a +log™ b, (10), and us < u+ 1 for § < 1, we have

2log (Qt 5><210g2+log (Qt >+|10gUI+t(maXV AV)s

hence the dominated convergence theorem shows the left side of (15) converges to
the left side of (14). O
Let PY"¥ be as in (6).

Corollary 1. Fiz V € C(X), u € M(X), let logy € L*(u), and let u > 0 Borel
satisfy logu € LY (u). Then fort >0,

Py P
(16) tIV(ﬂ)-i-/ log™ (tu> duz/ log™ < L IV
X u X u

Here the integrals may be infinite.

Proof. Since log 1) is in L (), log(ut) is in L'(p) iff logw is in L'(p). Now apply
Lemma 4. d
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Corollary 2. Let V € C(X) andlogv € L*(u). Then u € M(X) is an equilibrium
measure for V iff

Py Py
/ log™ <tu> dp 2/ log™ ( t Y dp
X u X u

fort >0 and u > 0 satisfying logu € L'(u).

Proof. If pis an equilibrium measure, IV (1) = 0 so the result follows from Corollary
1. Conversely, assume the inequality holds for all u > 0 satisfying logu € L(u).
For u € CH(X), the function u /1 satisfies log(u/v) € L*(u). Inserting u/ in the
inequality yields

7)\\/tPV 7/\\/tPV
/ log™ <etu> du 2/ log™ (etu> du.
X u X u

For v in C*(X), the integrals are finite hence

—thPV
/ log (etu> dp > 0.
X u

For u € D, with Q; = e »'PY t >0, we have Q;u € D+ so

Qiu=u+t(L+V —Ay)u+ o(t), t—0,

@:1+t(L+V—)\V)u
u

U
log <Qtu) = tw + O(t), t— 0,
u (%

+ o(t), t—0,

all uniformly on X. Hence dividing by ¢ and sending ¢ — 0 yields
/ (L+V =Av)u
X

u

dp > 0.

This implies IV (i) < 0, hence IV () = 0. O

A strongly continuous positive semigroup on L'(p) is a semigroup P, t > 0, of
bounded operators on L!(yu) preserving positivity Pf > 0 a.e. p, for f > 0 ae.
p, t >0, and satisfying ||Pif — fl/z1(u) — 0 as £ — 04. A Markov semigroup on
L'(p) is a strongly continuous positive semigroup on L!(p) satisfying P;1 = 1 a.e.
w, t > 0.

Lemma 5. Let V € C(X) and suppose ™ and p are measures with p << m, and
let v =du/dr. If  is a ground measure for V, then Ptv’w fl(x) < oo for p-a.a. x
and f in L*(p), Ptv’¢, t >0, is a strongly continuous positive semigroup on L' (1),
and

(17) w(PYYf) = u(f),  t>0,

for f in LY(p). If 1 is a ground state for V relative to p, Ptv’w, t >0, is a Markov
semigroup on L(u).
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Proof. If 7 is a ground measure, for f in C'(X) we have

”e—/\vtPtVfHLl(ﬂ_) — /X |€_/\vtPtVf|d’7T

[ e nintan = [ 191dr = o,
x X

IN

Hence e *VtPY t > 0, satisfies
(18) le™ P fllimy < I flims >0,

for f in C(X). Since the collection of functions f satisfying (18) is closed under
bounded pointwise convergence, (18) is valid for f € B(X). Inserting f An with f
nonnegative Borel and sending n — oo, (18) is then valid for nonnegative Borel f.
It follows that e *VtPY|f|(z) < oo, m-a.a. m, for f in L'(7), hence e " *VtPY t >0,
are well-defined contractions on L!(7). By (18) and the density of C(X) in L(n),
this implies w(e *V!PY f) = n(f), t > 0, for f in L'(x) and implies e *v!PY,
t >0, is a strongly continuous positive semigroup on L!().

Since ¢ € L(mr), (17) follows for f € C(X). But (18) for f nonnegative Borel
implies

(19) 1P fllieigo < Wflegos  t=0,
for f nonnegative Borel, hence Ptv’w fl(x) < oo, p-a.a. z, for f in L'(u), hence

PY¥ >0, are well-defined contractions on L*(s). Moreover
1P f = fllorg = lle ™ PY (fo) = [l =0, &= 0+, f € C(X).

By (19) and the density of C'(X) in L'(x), we conclude PY"¥, t > 0, is a strongly
continuous positive semigroup on L (1) and (17) holds for f € L' (u).

If ¢ is a ground state relative to p, Ptv’wl =1 a.e. pu. Thus in this case Ptv’w,
t > 0, is a Markov semigroup on L!(u). O

4. PROOFS OF THE THEOREMS

Proof of Theorem 1. For the first assertion, we have a ground measure « for V' and
a ground state ¢ for V relative to u satisfying logy € L'(u). Suppose logu €
L' (). Then P/Y|logu| is in L'(u) and there is a set N with u(N) = 0 and
P/ (|logul)(z) < co and P/"¥1(x) = 1 for = ¢ N. Jensen’s inequality applied to
the integral f — (PY"V f)(x) (see (5)) implies

PtV’¢u Vi
log | ——— | () 2 P,"" (log u)(2) — (logu)(z), = &N,

hence for x ¢ N,

Vi, Vi,
log™" (PtU> () > log™ (Ptu ) (2) + P (log u)(z) — (log u)(=).

Integrating over X against u, the integrals of the right-most two terms cancel by
(17) hence by Corollary 2, p is an equilibrium measure for V', establishing the first
assertion.

For the second assertion, assume 7 is a ground measure for V and p is an

equilibrium measure for V. Note [ PY"¥1du < oo so [log" (Ptv’wl) du < oo. By
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Corollary 2, it follows that [ log™ (Ptv’wl) du < oo, hence log (Ptv’wl) isin L(p).
By Jensen’s inequality, (17), and Corollary 2,

O—bQMD)—bg</I?W1@Qzz/l%ufwnduza
X X

Since log is strictly concave, this can only happen if Ptv’wl is p a.e. constant. By
(17), the constant is 1. Since ¢ > 0 a.e. p is immediate, this establishes the second
assertion.

For the third assertion, assume p is an equilibrium measure for V and ® is a
ground state for V relative to p. Then P"¥1 =1 a.e. p, so for u € C*(X),

min u Ptv’wu maxu
< <

< < — , a.e. (i,
max i u min u

hence log(P"Yu/u) is in L' (1) for u € C*(X). By Corollary 2, for f € C(X),
PVﬂ/} ef
6(6)E/log<t fe )duZO, le] < 1,
X e

and B(0) = 0, hence $(0) = 0. Differentiating at € = 0, we obtain

(20) Lfmwvwmzéwm

for f € C(X). Since the collection of functions f satisfying (20) is closed under

bounded pointwise convergence, (20) holds for f € B(X). Now for f € C(X),

fe= fv/(W+¢€) — f boundedly as € | 0, thus replacing f by f/(¢ +¢€) in (20) and

letting € | 0 establishes (4), hence 7 is a ground measure for V. This establishes

the third assertion. O
For p, 7 in M(X), the entropy of u relative to = is

H(,u,ﬂ'):sup(/ Vdu—log/ evd7T>
v \Jx b'e

where the supremum is over V' in C(X).

Lemma 6. H(pu, ) > 0 is finite iff u << 7 and ¢ = du/dr satisfies logyp € L' (),
in which case

Hum) = [ logvdu= [ wlogun.
X X
Moreover H is lower-semicontinuous and convex separately in each of p and .
This is Lemma 2.1 in [5].

Proof. The lower-semicontinuity and convexity follow from the definition of H as a
supremum of convex functions, in each variable 7, u separately. Suppose H (i, 7) <
00. Since the set of V' in B(X) satisfying

/Vduflog/ eV dr < H(p, )
X e

contains C'(X) and is closed under bounded pointwise convergence, it equals B(X).
Insert V = rl, into this inequality, where w(A) = 0, obtaining

ru(A) < rp(A) —log(m(A°)) < H(p, ).
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Let 7 — oo to conclude p << m. Since v = du/dn € L*(n), let 0 < f, € O(X)
with f, — 9 in L'(7). By passing to a subsequence, assume f,, — 1 a.e. 7. Insert
V =log(f. + €) into the definition of H to yield

/log(fnJre)duflog/(fnJre)dWSH(u,ﬂ).
b's b's

Let n — oo; by Fatou’s lemma,
[ wiostv+ ydr ~1og [ (w4 dr < Hu )
X X

Since w(1) + €) = 1 + ¢, applying Fatou’s lemma again as e — 0, fX Ylogdm <
H(p,).
Conversely, suppose ¢ = du/dr exists and 1 log 1) € L' (7). By Jensen’s inequal-

ity,
/ Vdu < log/ eV dy, V € B(X).
X X
Replace V by V —log() An + €) to get

eV
/}(Vdu—log/){(lm) dwﬁ/xwlog(w/\n—kc)dw.

Let € — 0 followed by n — oo obtaining

/ Vdu—log/ evdﬂg/ Ylogy dm.
b's X b's
Now maximize over V in C(X) to conclude H(p,m) < [y ¥ log dm. O

Proof of Theorem 2. By (12),
—AvtPV
/ log (etu) du > —tIV (), u € CH(X).
X u
Thus for f € C(X),

/ fdu —/ log (e_”\VtPtVef) dp < tIV (), felX).
X X

By Jensen’s inequality,

/ fdu— log/ (e_AVtPtVef) dp < tIV (p), feld(X).
b's b's

Defining
pe(f) = eV (P f)
and )
_ M
m(f) = 11:(1)
yields

[ fdu=tog [ e dm < eV ) +logur), € COx).
X X
Taking the supremum over all f yields

H (p,m) < 1Y (1) + log e (1).
Note p(1) < C, t > 0, hence

H (p,m) <tIV(n) +1logC,  t>0.



14 OMAR HIJAB

Now set
T T
o Jo mdt [ u(D)medt
T — T - T )
Syt T 1)
Then 7 is in M(X) for ¢t > 0, 7p is in M(X) for T > 0.

Now assume 4 is an equilibrium measure for V; then IV (1) = 0. By convexity
of H.

H (u,77) <logC, T > 0.

By compactness of M(X), select a sequence T,, — oo with 7, = Tr, converging to
some 7. By lower-semicontinuity of H, we have H(u,7) < logC. Thus p << 7
with ¢ = du/dr satisfying 1 log € L'(7). Since

log p(e V' PY1) > p(log(e *V'P/1)) > 0,
we have (1) > 1, ¢ > 0. This is enough to show
T (e TPY ) =mn(f) +0(1),  n— oo,

for all T > 0. Thus 7 is a ground measure for V. By Theorem 1, 1 is a ground
state for V relative to . The remaining assertions are in Lemma 5. O
We establish two lemmas used in the proof of Theorem 3.

Lemma 7. Let V € C(X). Under assumption (A), (7) holds.
This is Lemma 4.3.1 in [3].

Proof. Let T > 0 and € > 0 be as in (A). By (10), for ¢t > 0,
PTPtvl < ¢ Tmin VPZYPtVl — ¢~ Tmin VPtVP}/l
< 6T(max V —min V)PtVPTl _ eT(max V—minV) Ptvl.
Similarly, one has
PTPtV]. > eT(min V —max V)Ptvl

hence
eT(max V —min V)PtV]_ > PTPtvl > eT(min V —max V)PtV]_.

Let ¢ = 6eZT(min V —max V). By (A) this implies
Ptvl(x) Ze,Ptvl(y)v Iayexa
hence

IRV || = sup PY'1(z) > ¢(t) = inf P/ 1(x) > €|V, ¢>0.
But ¢(t) is supermultiplicative so

1 1 1 v
sup +log 6(t) = lim —log(t) < lim - logl|F7 || = Av.

Since € ||PY || < ¢(t), this implies (7) with C < 1/¢. O
Lemma 8. Under assumption (A), the ground state v in Theorem 2 may be chosen

such that log ) is in B(X). If moreover (B) holds, supp(u) = X. If moreover (C)
holds and V is smooth, 1) may be chosen in D> and strictly positive, and satisfies

Ly + Vi = Ay,
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Proof. With T and ¢ as in (A), let Qr = e * TP} and ¢ = eeT(minV—maxV)
Then Qry = ¢ a.e. u. By (A) and (10) we have

(21) Qrlfl(z) = €Qrlflly),  zyeX,

for all f € C(X). Since the collection of functions f satisfying (21) is closed under
bounded pointwise convergence, (21) is valid for f € B(X). Hence

Qri(z) = Qr(¥ An)(z) = €Qr(v An)(y),  z,y€X.
Let 1[1 = Q. Sending n — oo yields
(22) b(x) > Py),  wyeX.

Since 1 is a ground state, ¥ = ¥ a.e. p. Since 0 < ¢ < oo a.e. p, we have
0 < 1) < oo ae. Iz hence (22) implies v is bounded away from zero and away from
infinity, i.e. log4) is in B(X). Since dr = dp/ = dyi/1, Theorem 1 implies 1) is a
ground state. Thus we may replace ¢ by 1/1 and assume log ) € B(X).

With T > 0 as in (B), f € C(X) nonnegative implies

f
W) = H(PEE 1) 2 b N u(Prg) > 0

Hence supp(p) = X.
Now let 1) = Q7 and assume V is smooth. Then ) = ¢ a.e. p hence as before
w is a ground state. Since Y € D, we may replace 1 by ¢ and assume ¢ € D>°.
Since supp(p) = X, e PV =4, t > 0, holds identically on X, hence 1 is
strictly positive. Differentiating this yields Ly + Vi = Ay . (]

Proof of Theorem 3. Let 1; € D> be the strictly positive ground states for V;
relative to pu, ¢ = 1,2, given by Lemma 8. Since p is PtVi’wi—invariant, i =1,2,
differentiating (17) yields

L) L, _ L(if) Lt/%) _
0_/X " +Vif Avifdu—/X( % f% dp = /X%[Lf]@bzdu,

for f € D, for i = 1,2. Subtract these two equations and insert f = 1)1 /12 to get
1
/ 1 HL 7#1} 1?1} o
x U1 (S
But ¥ > miny so by Lemma 2 applied with f = ¥y — min s,

1 H 1/)1] Tbl]w > minwz (¢1)>0
P “ha ]ty maxiyy \ P2

/X L(t1/1p2) dp = 0.

Since supp(p) = X, I'(1p1/1p2) = 0 which yields by (D) 1, = ctpo = . Thus we
arrive at Ly + Vi1 = Ay, for 4 = 1,2. Subtracting yields the result. (]

SO
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