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Abstract

Hyperplane separability in a two-class dataset is related to the cor-
responding logistic regression problem. It is shown logistic regression, in
its pure un-penalized form, is trainable exactly when the dataset is not
separable. This result is contrasted with the behavior of the perceptron
algorithm.
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1 Introduction

Linear classifiers of two-class datasets are widely used in machine learning. Two
approaches to such classifiers are the perceptron algorithm and logistic regression.

Both approaches may be formulated as loss minimization problems, with the goal
of achieving an optimal hyperplane

m-xz+b=0 (1)

separating the dataset’s two classes.

In a two-class dataset, each sample has a label p = 0,1. On the other hand, a hy-
perplane divides the sample space into two half-spaces ¢ = 0,1. When the hyperplane
is separating, the p’s match the ¢’s for every dataset sample not on the hyperplane.

The perceptron algorithm loss function Jpe(m,b) penalizes non-separability of a
hyperplane (m,b) directly by measuring the level y = m -z + b of each incorrectly
classified sample x. By design, Jpq(m,b) = 0 exactly when (m,b) is separating.

The logistic regression loss function Ji.(m,b) penalizes non-separability of (m,b)
by computing a probability ¢ = ¢(x), depending only on the level y of z, that the
sample lies in the class ¢ = 1, and measuring the information mismatch between g(x)
the label p = p(z). By design, p is never equal to ¢, and hence J;,-(m, b) is never zero.

Given a scale factor ¢ > 0, for either problem, rescale J(m,b) to J(tm,tb). This
corresponds to rescaling each sample’s level y to ty, pushing out the dataset away from
the hyperplane (m,b) as t — cc.

For the perceptron algorithm, Jp.(tm,tb) = tJpa(m,b), for all (m,b). For logistic
regression, either Ji.(tm,tb) — 0 or Ji(tm,tb) — oo as t — oo, according to whether
(m, ) is strictly separating or not separating.
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Based on this, it is natural to consider Ji-(tm,tb)/t. Then we have
%Jm(tm,tb) — Jpa(m,b), as t — 00, for all (m, ). (2)

In this sense, the logistic regression loss function is a softened version of the perceptron
algorithm loss function. Because this result is not as well-known as it should be, we
derive this in §8.

The loss function Jpq(m,b) always has a minimizer (m*,b*). When the dataset is
separable, min J,, = 0, and, when the dataset is not separable, min J,, > 0.

By contrast, existence of a minimizer for Ji-(m, b) is connected to the separability
of the dataset. When the dataset is not separable, there is a minimizer (m*,b*) and
min J;, > 0. When the dataset is separable, there is no minimizer. Moreover, when
the dataset is strictly separable, the loss is arbitrarily close to zero, inf J;, = 0.

LR PA
not separable minJ >0 | minJ >0
separable no min min J =0
strictly separable | infJ =0 | minJ =0

Table 1: Minimizers grid.

Table 1 summarizes the situation.

When the dataset is separable, the well-known perceptron convergence theorem
guarantees the convergence of stochastic gradient descent along Jpe(m,b) to a sepa-
rating hyperplane [5]. When the dataset is not separable, the descent sequence remains
bounded and thrashes with no convergence [2], [4].

Contrary to what (2) might suggest, for logistic regression the situation is markedly
different. When the dataset is not separable, gradient descent along J;(m, b) converges
to a minimizer. When the dataset is separable, the descent sequence diverges to
infinity.

LR PA
not separable | converges to minimizer | thrashes
separable diverges to infinity converges to minimizer

Table 2: Gradient descent grid.

Table 2 summarizes the situation. The LR results are the main results of the paper.

2 Background

Let x1, x2, ..., xn be the samples of a two-class dataset in sample space, which
we assume to be euclidean space R? with d features, and let p1, po, ..., pn be the
sequence of labels reflecting the class membership of the samples. Then the two classes
correspond to p = 0 and p = 1 respectively. Because samples may be repeated, the
two classes need not be disjoint.

Let m be a nonzero vector, b a scalar, and m - x the dot product. A hyperplane
in sample space is specified by (1). When the samples x are scalars, a hyperplane is



a point. When each sample has two features, a hyperplane is a line, and, with three
features, a hyperplane is a plane.

The level of a point z relative to a hyperplane (m,b) is the scalar y = m - x + b.
Then the hyperplane consists of samples at level zero. If m is a unit vector, the level
of x equals the signed distance of x to the hyperplane.

Let yr = m - xr + b be the level of the sample z; relative to a hyperplane, k =
1,2,..., N. The hyperplane is separating if

uw <0, ?fp'“fo’ k=1,2,...,N. (3)
yr > 0, if pp =1,
If the inequalities are strict, the hyperplane is strictly separating.

If there is a separating hyperplane, the dataset is separable. Otherwise, the dataset
is inseparable. If there is a strictly separating hyperplane, the dataset is strictly sepa-
rable.

If the dataset lies in a hyperplane, then that hyperplane is separating, so the
separability question is only interesting when the dataset does not lie in a hyperplane.

If a dataset is separable, and neither class lies in a separating hyperplane (m,b),
any samples in the hyperplane may be considered boundary cases.

In this case, we may select either class and reclassify these samples to belong
to that class. This modification does not impact the separability, and the resulting
dataset is strictly separable, as can be seen by shifting the bias b slightly. In this sense,
separability and strict separability are almost the same.

If a dataset is strictly separable, then the convex hulls K¢ and K5 of the two classes
do not intersect, and there is a shortest line segment connecting them. A mazimum-
margin hyperplane is then the hyperplane orthogonal to such a shortest line segment
and passing through its midpoint.

Let po, g1 be the means of the two classes, and suppose pi is in a separating
hyperplane. Then, relative to the hyperplane, the level of u; is zero, and the sample
levels in the class p = 1 are nonnegative. Since the level of p; is the average of the
sample levels, these sample levels are all zero, hence the class lies in the hyperplane.

Since the same reasoning applies to po, separability and equality of the means
imply both means lie in the same separating hyperplane, hence the dataset lies in
that hyperplane. Equivalently, if a separable dataset does not lie in a hyperplane, the
means of the two classes are distinct.

Given a two-class dataset, a binary classifier is a procedure for classifying points
in sample space into two classes, in a manner consistent with the dataset. Given a
separable dataset, we obtain a binary classifier by selecting a separating hyperplane
and assigning points = to classes according to the sign of their level y.

One way to find a separating hyperplane is to minimize a loss function that directly
penalizes mismatches. If a hyperplane (m,b) incorrectly classifies a sample x in class
p = 0, then y > 0, and we should lower y. If x is incorrectly classified and in class
p =1, then y < 0, and we should raise y.

The simplest loss function achieving this is the average of the levels of samples, with
each level adjusted by + according to class, and only taking into account mismatched
samples.

Let relu(y) = max(y,0). We are led to the loss function

N .

1 relu( if pp =0,

Ipa(m, b) Z yk . Pr Yk =m -z +b. (4)
k:l relu(— if pr =1,



Then Jpq(m,b) = 0 exactly when (m,b) is separating.

Based on the above heuristics, pushing down this loss function should bring us
closer to a separating hyperplane. The perceptron algorithm [5] is iteratively follow-
ing stochastic gradient descent along this loss function. The perceptron convergence
theorem [5] guarantees this algorithm converges in finitely many steps to a separating
hyperplane, provided the dataset is separable.

Given a hyperplane, another binary classifier is obtained by computing a proba-
bility ¢, depending only on the level y of x, that = should be assigned to the class
p = 1. To be as consistent as possible with the dataset, we choose some measure of
discrepancy I(p,q) between probabilities p and ¢, and we select the hyperplane that
minimizes the average J of the discrepancies I (px, gr) between py, and the probabilities
qr corresponding to the dataset samples z, k =1,2,..., N.

Since y is a scalar and ¢ is a probability, we use a squashing function ¢ = o(y) to
convert scalars to probabilities.

Figure 1: The graph of the relative information over the unit square.

The standard choices are the relative information (Figure 1)

1—

and the sigmoid activation function (Figure 4)

1

a(y)
Since I > 0 and I = 0 only when p = ¢, I(p,q) is a measure of information
discrepancy. Because I(p,q) is not symmetric in (p,q), g is thought of as a base
probability against which p is compared.
With these choices, logistic regression is the minimization of the loss function

1

N
Jir(m, b) = Zf(pm%)v ak = o(yk), Yk =m -z + b,
k=1

=

over all m and b.



3 Results

A minimizer for a loss function J(m,b) is a weight (m*,b*) satisfying J(m*,b") <
J(m,b) for all (m,b).

Theorem 1. Jpo(m,bd) always has a minimizer. When the dataset is separable,
min Jy, = 0, and, when the dataset is inseparable, min Jpq > 0.

Theorem 2. Assume the dataset does not lie in a hyperplane. Then Ji-(m,b) has
at most one minimizer. Moreover the means of the classes agree iff Jir(m,b) has a
minimizer with m* = 0.

Let © and @ be the mean and variance of the dataset, and let

L= i (14 |uf? + trace(Q)) - (5)

A dataset is standard if each feature has mean zero and variance one. If the dataset
is standard, L = (1 + d)/4.

Theorem 3. Let (mi,b1), (ma2,b2), (ms,b3), ... be a gradient descent sequence for
Jir(m, b), with learning rates equal to 1/L. Then the gradients ¥V Ji.(mn, bs) converge
to zero. Assume neither class lies in a hyperplane. Then either Ji.(m,b) has a unique
minimizer (m*,b") and the sequence converges to the minimizer,

(M, br) = (M™,07), asmn — 0o,
or there is no minimizer and the sequence diverges to infinity,
[mn|? + b2 — oo, asn — oo,
according to whether the dataset is inseparable or separable.

The details and the proofs of the above results are in §8. By Theorem 2, if the
means of the two classes are distinct, the minimizer (m*,b*) satisfies m* # 0, hence
is a hyperplane, the LR hyperplane.

4 An Example

A simple example of a two-class logistic regression problem, based on an example in
[6], is as follows.

T p x P x p T plx |p
05 (0] .75 |0 10 |0]125]0|15|0
175 0| 17| 1] 20 |0]225|1|25|0
27 11130 |0]325]1] 35 |0]40]|1
425|145 | 1|47 |1| 50 |1]55]1

Figure 2: Months trained and outcomes.

A group of hikers train to scale Mount Rainier. For each hiker, we know the number
of months they train, as well as whether or not (p equal 1 or 0) they subsequently



succeed at scaling the peak (Figure 2). We use logistic regression to provide a decision
boundary or cut-off predicting success.

The samples here are scalars, and the dataset is one-dimensional. In Figure 3,
KoN K is the overlap between the two classes. The overlap plays a crucial role in the
analysis.

KonN K,

Figure 3: Hikers dataset samples.

Plotting the dataset on the (z, ) plane, the goal is to fit a curve

¢=o(ma+b) (6)
as in Figure 4.
1 o ° o ° >0 ¢
/
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Figure 4: Fitted sigmoid curve for hikers dataset.

The dataset is one-dimensional, so a hyperplane is a point. Neither class lies in a
hyperplane, and the dataset is inseparable (Figure 3). Hence Ji;-(m, b) has a minimizer,
and gradient descent is guaranteed to converge to the unique minimizing weight, which
turns out to be

m” = 1.50464542, b* = —4.0777134.

The cut-off * = —b*/m™* = 2.71008 is the LR hyperplane (Figure 4).
While this numerical result is in [6], the above framework guaranteeing the exis-
tence of (m™*,b*) is not.

5 Properness

Let |w| denote the absolute value of a scalar weight w or the length of a vector weight
w, as the case may be. In our setting, weights are w = (m, b).



Figure 5: The graph of a proper continuous function.

Let f(w) be a scalar function of weights w, defined on euclidean space. A minimizer
is a weight w* satisfying f(w*) < f(w) for all w.

The function f(w) is proper if every sublevel set is bounded: for every level ¢, there
is a bound C such that

flw) <ec implies |lw| < C. (7)

A proper function need not be convex everywhere (Figure 5). If the graph of f(w)
is the cross-section of a river, then properness means the river never floods its banks,
no matter how much it rains. Then the following hold.

o If f(w) is continuous and proper, then f(w) has a minimizer [3, §4.3].

o If f(w) is strictly convex, continuously differentiable, and has a minimizer, then
f(w) is proper [3, §4.5].
The parabola f(w) = w? is strictly convex on the real line, and is proper and has
a minimizer. The exponential f(w) = e" is strictly convex on the real line, but is
neither proper nor has a minimizer.
When applying these and the following results, keep in mind Jpe(m, b) is continuous
but not continuously differentiable, and J;-(m, b) is continuously differentiable.

6 Separability
If 21, 2, ..., xn is a dataset, a convexr combination of samples is the weighed sum
T =1ty +tox2 + - +InTN,

with ¢x nonnegative, tx > 0, and summing to one, t;1 +t2 + --- +tnx = 1. The convex
hull of a dataset is the set of all convex combinations of samples in the dataset.

A ball with center p and radius r is the set B of points x whose distance from p
is no greater than r: |x — u| < r. Let K be any set of points in sample space. Then
K has interior if there is a ball wholly contained in K. Otherwise, K has no interior.
With this understood, it is easy to check a hyperplane has no interior.

Let Ko and K3 be the convex hulls of the classes of a two-class dataset, and assume
neither class lies in a hyperplane. Then wthe following holds [3, §4.5].

e (Hyperplane separation theorem) The dataset is inseparable iff the intersection
Ko N K5 has interior. Equivalently, the dataset is separable iff Ko N K; has no
interior.



Any dataset may be “doubled” to a two-class dataset by taking each of the two
classes to be the dataset itself. Then, for the doubled dataset, Ji.(m,b) > log?2 for all
(m,b), and J;-(0,0) =log2, so (m*,b") = (0,0) is a minimizer.

The doubled dataset is separable iff the original dataset lies in a hyperplane. Apply-
ing the hyperplane separation theorem to the doubled dataset, we conclude a dataset
lies in a hyperplane iff its convex hull K has no interior.

7 Gradient Descent

Let f(w) be a scalar function of weights w, defined on euclidean space. A descent
sequence is a sequence of weights w1, wa, ws, ... satisfying

flwi) > f(wz) > flws) > ...

If w is a weight in a sequence of weights, let w™ denote the next weight in the
sequence. A gradient descent sequence is a sequence generated by the iteration

wh =w —tVf(w).

The scalar t > 0 is the learning rate. The learning rates may be constant or may vary
along the sequence.
If @ is a symmetric matrix and w - Qu < L for all unit vectors u, we write Q < L.
For each w, the second derivative D2f(w) is a symmetric matrix.
If the learning rates ¢ of a gradient descent sequence all equal 1/L for some L
satisfying
D*f(w) < L, for all w, (8)

the gradient descent sequence is short-step.
When the gradient descent sequence is short-step, t = 1/L,

Jw*) < fw) = VI w)P ©)

[3, §7.3], hence a short-step gradient descent sequence is a descent sequence.

If f(w) is bounded below, the limit of the loss function along a descent sequence
exists. From (9), we conclude: Along a short-step gradient descent sequence, the limit
of the gradient of the loss function is zero.

A sequence subconverges to w* if some subsequence converges to w*. If a short-
step gradient descent sequence subconverges to w*, and V f(w) is continuous, then
Vf(w*)=0.

For a convex function, V f(w*) = 0 iff w* is a minimizer. We conclude w* is a
minimizer if moreover f(w) is convex.

8 Proofs of Results

We delay the proof of Theorem 1 till the end, and we focus first on J,-(m,b), which
we denote more simply as J(m,b) in the derivation of Theorems 2 and 3 below. We
start by computing the derivatives of J(m,b).

The cumulant-generating function of a fair coin, ignoring a constant term, is

Z(y) = log(1 + ¢"). (10)



Then
Z'y)=q, Z'y)=d=49(-9), qg=o0y).
Let I(p) be the absolute information,

I(p) = plogp + (1 — p)log(1 — p), 0<p<1
Then

I(p,q) = I(p) —py + Z(y), q=0(y), (11)

This last identity, the information error identity, implies I(p) and Z(y) are dual convex
functions [3, §4.1].
Since I(p) = 0 when p = 0,1, (11) implies

Y RAL ifp=0, B
I(p,q) = {Z(y)_y_z(_y)’ ifp—l,} q=o(y). (12)

Consequently, J(m,b) is the standard “cross-entropy” loss function.
From (11), we have
L rp.q)=a—p, dil(p 9)=q(l-q), qg=0ay).
dy dy?
By the chain rule,
2

if(n a(y +tv)) = (¢ — p)v, @I(p, oy +t)) = q(1 — q)v’.

dt
Let vo be a vector and vy a scalar, and let v = v - x + v1. Then
(m—+tv)-z+(b+tvi))=(m-z+b)+tlvo-x+v1) =y+tv.

With
gr =0(yx) = o(m -z +b), k=1,2,...,N,

the first directional derivative of the loss function is

N
1
J(m + tvo, b+ tv1) = N Z(Qk —pi)(vo - T + V1), (13)

t=0 k=1

and the second directional derivative of the loss function is

d2

N
1
p7El J(m + tvo, b+ tv1) = Nqu(lqu)(v0~xk+vl)2. (14)

t=0 k=1

Since 0 < ¢ < 1, k = 1,2,...,N, by (14), the second directional derivative is
nonnegative, so J(m,b) is convex.

If the second directional derivative equals zero for some m, b, v, and v1, by (14),
the dataset satisfies vo - xx +v1 = 0, k = 1,2,...,N. Thus the dataset lies in a
hyperplane, unless vo = v1 = 0.

Under the assumptions of Theorem 2, the dataset does not lie in a hyperplane,
hence vg = v1 = 0. This establishes the strict convexity of J(m,b). Since a strictly
convex function has at most one minimizer, this establishes the first portion of Theo-
rem 2.



Since (13) shows the gradient of the loss function is a continuous function of (m, b),
we see existence of a minimizer and properness of the loss function are equivalent, when
the dataset does not lie in a hyperplane.

A point (m,b) is a critical point if the first directional derivative (13) vanishes in
all directions (vo,v1). For any convex function, a point is critical iff it is a minimizer.

Let n be the number of samples in the class p = 1, and let po, g1 be the means of
the classes p =0, p = 1. Then

CRE DI S P

pr=1 Pr=0

Given b, let ¢ = o(b). If (0,b) is a critical point, then the first directional derivative
vanishes, and (13) implies
N —n _n

4o w0 +o1) = (1= q) (ur - vo + 1) (15)

for all vg and v;. Taking v; =1 and vg = 0 in (15) implies ¢ = n/N. Using this, and
taking v1 = 0 and vo arbitrary in (15), we conclude po = p1.

Conversely, if po = p1, let ¢ = n/N be the proportion of samples satisfying pr, = 1,
and let b = 0~ *(¢q). Then (15) holds for all vy and v1. It follows (13) vanishes with
(m,b) = (0,b), hence (0,b) is a critical point. This establishes the second portion of
Theorem 2.

ifp=0andy<0,

. (16)
ifp=1andy>0.

I(p,q) <log2, q=o0(y), {

For Theorem 3, assume the dataset is separable. Then there is a separating hy-
perplane (m,b). By (16), I(pk,qr) < log2 for k = 1,2,..., N, hence J(m,b) < log2.
But (tm, tb) is the same hyperplane, so

J(tm, th) < log 2, t>0.

Since this contradicts (7), J(m,b) is not proper, hence there is no minimizer.

On the other hand, suppose the dataset is inseparable. Let Ko and K7 be the
convex hulls of the two classes. If neither class lies in a hyperplane, by the hyperplane
separation theorem, the intersection Ko N K; has interior, so there is a ball B in
KoNKj.

Let © and r be the center and radius of B. We establish properness by showing

J(m,b) <c implies |m| + b < g (L4 +p]). (17)

Since w = (m, b) implies

lw| = /|m[? + b < |m| + [b],

(17) implies properness.
If J(m,b) <c, then I(pr,qr) <cN, k=1,2,...,N. Since y < Z(y), by (12),

: k=12 .. N
—yr < Z(=yx) = I(pr, qr) < cN, if pp =1,

10



By taking convex combinations,

y < cN, for x in Ko,
—y < ¢N, for z in K;.
From this,
|m -z + b| < ¢N, for z in Ko N K.
If v is a unit vector, the points x+ = p £ rv are in B. Since
2rm-v=(m-z4++b)— (m-z_ +0),
we have
2rim-v| < |m- x4 + b+ |m-z- + b < 2¢N.
Choosing v = m/|m|, we obtain
cN
Im| < —.
r
The point y is in B. Since
b=(m-p+b)—m-pu,
we have
b1 < [ - g+ bl + |m - 4l < N + [ [u.

This leads to (17), establishing properness, hence existence of a minimizer of J(m,b).

Let
1 < 1 (&
/A:Ng_lwky Q:N<k§_lxk®fﬂk>u®u

be the mean and variance of the dataset. Then, with L given by (5),

N
_ 2 _ 1 2
AL =1+ |pu]” + trace(Q) = N,;:l (1+ |zx]?) -

Since ¢(1 — ¢q) < 1/4 and
(vo -z +v1)* < (|z* +1) (Joo]* +07)

by (14), we conclude
D*J(m,b) < L,  for all (m,b). (18)

Let w1, we, ws, ... be a gradient descent sequence for the loss function, with L
given by (5). Then, by (18), the sequence is short-step. Hence, by (9), the sequence
is a descent sequence. It follows the sequence remains in a sublevel set.

Since J(m,b) is strictly convex, if the sequence subconverges to (m*,b*), then
(m™,b") is the unique minimizer.

If the dataset is inseparable, there is a minimizer, hence J(m,b) is proper, hence
sublevel sets are bounded, hence the sequence remains bounded. If the sequence
subconverges to some (m*, b"), then (m™*,b*) is the unique minimizer, and the sequence
converges to (m”*,b").

On the other hand, if the dataset is separable, there is no minimizer, hence the
sequence cannot subconverge to any (m*,b"). Thus the sequence diverges to infinity,
completing the proof of Theorem 3.

11



Theorem 3 and its proof remain valid for non-constant learning rates t, as long as
e <t <1/L, for some fixed € > 0.

From Figure 1, I(p,q) = 0 at two of the corners of the unit square, and I(p, q) = oo
at the other two corners. Let z be a sample not on a hyperplane (m,b). With
y=m-x+b, it follows I(p,o(ty)) goes to zero or to infinity, as t — oo, according to
whether (m,b) correctly classifies  or not. We conclude J(tm,tb) — oo as t — oo, if
(m, b) is not separating, and J(tm,tb) — 0 as t — oo, if (m, b) is strictly separating.

Let
y <0,

y =0,
y >0,

1y >0)=

— o= O

be the step function and let relu(y) = max(y,0). Then o(ty) — 1(y > 0) as t — oo,
and
relu(y) = y1(y > 0) and relu(y) — y = relu(—y). (19)

For (2), by I'Hopital’s rule,

lim 1Z(ty) = tlim Z'(ty)y = tlim o(ty)y = relu(y). (20)
—00 —00

t—o0 t

This shows Z(y) is a softened version of relu(y). Then (11), (19), and (20) imply

Jim Y, otty)) = { relu(y) p=0
—oo t relu(—y), p=1.
This last equation implies (2).

Finally, for Theorem 1, Jpq(m,b) = 0 when (m, b) is separating. To show Jp,(m, b)
has a minimizer when the dataset is inseparable, it is enough to verify inseparability
implies properness of Jpq(m,b).

Since

max(relu(y), relu(—y)) = [y,

the proof of (17), suitably modified, remains valid for J(m,b) = Jpa(m,b).

9 Discussion

The takeaway is we have two mutually exclusive cases. Either a dataset is separable or
not. If a dataset is separable, PA gradient descent converges to a decision boundary.
If a dataset is inseparable, LR gradient descent converges to a decision boundary.

In practice, referring to PA, [1] states

. the number of steps required to achieve convergence could still be sub-
stantial, and in practice, until convergence is achieved, we will not be able
to distinguish between a nonseparable problem and one that is simply slow
to converge ...

Theorem 3 suggests using LR to check for separability. When following short-step
gradient descent, we know the gradients converge to zero in all cases. However, in
practice, there seems to be a substantial difference in the rate of convergence, according
to whether or not the dataset is separable.

12



10 Terminology

Because there is some terminology confusion in the literature, we go over the usage of
some of the terms used above.

1.

In the literature, I(p, q) is called the “Kullback-Liebler divergence” or “relative
entropy”. We prefer the term relative information because this terminology is
more descriptive and consistent with the absolute information I(p), and because
I(p, q) is convex.

In Python, as of this writing, scipy.stats.entropy(p) returns the absolute
entropy H(p) = —I(p), and scipy.stats.entropy(p,q) returns the relative
information I(p,q), not the relative entropy H(p,q) = —I(p,q). Apart from
being incorrect, this is inconsistent, even within Python.

In the literature, Z(y) — p - y is called the “cross-entropy”. We prefer the term
cross-information because this terminology is consistent with the terminology for
I(p) and I(p, q), and because (see (11)) the cross-information equals I(p, ¢)—1I(p)
when ¢ = o(y).

To further support our terminology choices, we note entropy is the negative of
information, entropy is concave, information is convex, and loss functions are
minimized, not maximized. Of course, the issue here is terminology, not the
choice of loss function: the loss functions in the literature are identical with the
loss functions here.
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