A SIMPLE PROOF OF HEAVY BALL CONVERGENCE

OMAR HIJAB

Let f(w) be a scalar function of a point w in euclidean space. A basic problem is to minimize f(w), that is, to find or compute a minimizer w^* ,

$$f(w) \ge f(w^*)$$
, for every w .

A descent sequence is a sequence w_0, w_1, w_2, \ldots satisfying

$$f(w_0) \ge f(w_1) \ge f(w_2) \ge \dots$$

In a descent sequence, the point after $w = w_n$ is $w^+ = w_{n+1}$, and the point before w is $w^- = w_{n-1}$. Then $(w^-)^+ = w = (w^+)^-$.

We assume the loss function is quadratic,

(1)
$$f(w) = \frac{1}{2}w \cdot Qw - b \cdot w,$$

where the eigenvalues of the symmetric matrix Q lie strictly between positive constants m < L. Then there is a unique global minimizer w^* . Let

(2)
$$C^{2} = \max_{\lambda} \frac{(L-m)(L-m)}{(L-\lambda)(\lambda-m)},$$

where the maximum is over the eigenvalues of Q.

Theorem (Polyak [1, 2, 3, 4]). Suppose f(w) is quadratic, let r = m/L, and set $E(w) = |w - w^*|$. Let C be given by (2). Then the descent sequence $w_{-1} = w_0$, w_1 , w_2 , ... given by

(3)
$$w^{+} = w - t\nabla f(w) + s(w - w^{-})$$

with learning rate and the decay rate

$$t = \frac{1}{L} \cdot \frac{4}{(1+\sqrt{r})^2}, \qquad s = \left(\frac{1-\sqrt{r}}{1+\sqrt{r}}\right)^2,$$

converges to w^* at the rate

(4)
$$E(w_n) \le C \left(\frac{1-\sqrt{r}}{1+\sqrt{r}}\right)^n E(w_0), \qquad n = 1, 2, \dots$$

Proof. Since $\nabla f(w) = Qw - b$, the sequence satisfies

(5)
$$w_{n+1} = w_n - t(Qw_n - b) + s(w_n - w_{n-1}), \qquad n = 0, 1, 2, \dots$$

To initialize this recursion, we set $w_{-1} = w_0^- = w_0$. This implies $w_1 = w_0 - t(Qw_0 - b)$.

Let v be an eigenvector of Q with eigenvalue λ . To solve (5), we assume a solution of the form

(6)
$$w_n = w^* + \rho^n v, \qquad Qv = \lambda v.$$

Date: January 2024.

Inserting this into (5) and using $Qw^* = b$ leads to the quadratic equation

$$\rho^2 = (1 - t\lambda + s)\rho - s$$

with discriminant

$$\Delta = (1 - \lambda t + s)^2 - 4s.$$

Now $\Delta < 0$ exactly when

(7)
$$\frac{(1-\sqrt{s})^2}{\lambda} < t < \frac{(1+\sqrt{s})^2}{\lambda}.$$

If we assume

(8)
$$\frac{(1-\sqrt{s})^2}{m} \le t \le \frac{(1+\sqrt{s})^2}{L},$$

then

(9)
$$\Delta \le -(1-s)^2 \frac{(L-\lambda)(\lambda-m)}{mL},$$

for every eigenvalue λ of Q. When $\Delta < 0$, the roots are conjugate complex numbers ρ , $\bar{\rho}$, where

(10)
$$\rho = x + iy = \frac{(1 - \lambda t + s) + i\sqrt{-(1 - \lambda t + s)^2 + 4s}}{2}.$$

It follows the absolute value of ρ equals

$$|\rho| = \sqrt{x^2 + y^2} = \sqrt{s}.$$

To obtain the fastest convergence, we choose s and t to minimize $|\rho| = \sqrt{s}$, while still satisfying (8). This forces (8) to be an equality,

$$\frac{(1-\sqrt{s})^2}{m} = t = \frac{(1+\sqrt{s})^2}{L}.$$

These are two equations in two unknowns s, t. Solving, we obtain the choices for s and t made above.

Since (5) is a 2-step linear recursion, the general solution depends on two constants A, B. Let $\lambda_1, \lambda_2, \ldots$ be the eigenvalues of Q and let v_1, v_2, \ldots be the corresponding orthonormal basis of eigenvectors in the euclidean space. Since (5) is a 2-step vector linear recursion, A and B are vectors, and the general solution depends on constants A_k, B_k corresponding to each $\lambda_k, k = 1, 2, \ldots$

If ρ_k , $k=1,2,\ldots$, are the corresponding roots (10), then (6) is a solution of (5) for each of the roots $\rho=\rho_k$ and $\rho=\bar{\rho}_k$, $k=1,2,\ldots$. Therefore the linear combination

(11)
$$w_n = w^* + \sum_k (A_k \rho_k^n + B_k \bar{\rho}_k^n) v_k, \qquad n = 0, 1, 2, \dots$$

is the general solution of (5). Inserting n = 0 and n = 1 into (11), then taking the dot product of the result with v_k , we obtain two linear equations for two unknowns A_k , B_k . Solving for A_k , $B_k = \bar{A}_k$, then using (9),

$$|A_k| = |B_k| \le \frac{1}{2}C|(w_0 - w^*) \cdot v_k|.$$

By orthonormality of the basis,

$$|w_n - w^*|^2 = \sum_k |A_k \rho_k^n + B_k \bar{\rho}_k^n|^2$$

$$\leq \sum_k (|A_k| + |B_k|)^2 s^n$$

$$\leq C^2 s^n \sum_k |(w_0 - w^*) \cdot v_k|^2$$

$$= C^2 s^n |w_0 - w^*|^2.$$

Note: Since the proof is dimension-independent, a version of the result should hold in Hilbert space.

References

- [1] Sébastien Bubeck, Convex Optimization: Algorithms and Complexity, Now Publishers (2015).
- [2] Yurii Nesterov, Lectures on Convex Optimization, Springer (2018).
- [3] Boris Teodorovich Polyak, Some methods of speeding up the convergence of iteration methods, USSR Computational Mathematics and Mathematical Physics, 4(5) 1-17 (1964).
- [4] Stephen J. Wright and Benjamin Recht, *Optimization for Data Analysis*, Cambridge University (2022).

Temple University

 $Email\ address: {\tt hijab@temple.edu}$