
A SIMPLE PROOF OF HEAVY BALL CONVERGENCE

OMAR HIJAB

Let f(w) be a scalar function of a point w in euclidean space. A basic problem
is to minimize f(w), that is, to find or compute a minimizer w∗,

f(w) ≥ f(w∗), for every w.

A descent sequence is a sequence w0, w1, w2, . . . satisfying

f(w0) ≥ f(w1) ≥ f(w2) ≥ . . . .

In a descent sequence, the point after w = wn is w+ = wn+1, and the point before
w is w− = wn−1. Then (w−)+ = w = (w+)−.

We assume the loss function is quadratic,

(1) f(w) =
1

2
w ·Qw − b · w,

where the eigenvalues of the symmetric matrix Q lie strictly between positive con-
stants m < L. Then there is a unique global minimizer w∗. Let

(2) C2 = max
λ

(L−m)(L−m)

(L− λ)(λ−m)
,

where the maximum is over the eigenvalues of Q.

Theorem (Polyak [1, 2, 3, 4]). Suppose f(w) is quadratic, let r = m/L, and set
E(w) = |w−w∗|. Let C be given by (2). Then the descent sequence w−1 = w0, w1,
w2, . . . given by

(3) w+ = w − t∇f(w) + s(w − w−)

with learning rate and the decay rate

t =
1

L
· 4

(1 +
√
r)2

, s =

(
1−

√
r

1 +
√
r

)2

,

converges to w∗ at the rate

(4) E(wn) ≤ C

(
1−

√
r

1 +
√
r

)n

E(w0), n = 1, 2, . . .

Proof. Since ∇f(w) = Qw − b, the sequence satisfies

(5) wn+1 = wn − t(Qwn − b) + s(wn − wn−1), n = 0, 1, 2, . . . .

To initialize this recursion, we set w−1 = w−
0 = w0. This implies w1 = w0−t(Qw0−

b).
Let v be an eigenvector of Q with eigenvalue λ. To solve (5), we assume a

solution of the form

(6) wn = w∗ + ρnv, Qv = λv.
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Inserting this into (5) and using Qw∗ = b leads to the quadratic equation

ρ2 = (1− tλ+ s)ρ− s

with discriminant

∆ = (1− λt+ s)2 − 4s.

Now ∆ < 0 exactly when

(7)
(1−

√
s)2

λ
< t <

(1 +
√
s)2

λ
.

If we assume

(8)
(1−

√
s)2

m
≤ t ≤ (1 +

√
s)2

L
,

then

(9) ∆ ≤ −(1− s)2
(L− λ)(λ−m)

mL
,

for every eigenvalue λ of Q. When ∆ < 0, the roots are conjugate complex numbers
ρ, ρ̄, where

(10) ρ = x+ iy =
(1− λt+ s) + i

√
−(1− λt+ s)2 + 4s

2
.

It follows the absolute value of ρ equals

|ρ| =
√
x2 + y2 =

√
s.

To obtain the fastest convergence, we choose s and t to minimize |ρ| =
√
s, while

still satisfying (8). This forces (8) to be an equality,

(1−
√
s)2

m
= t =

(1 +
√
s)2

L
.

These are two equations in two unknowns s, t. Solving, we obtain the choices for s
and t made above.

Since (5) is a 2-step linear recursion, the general solution depends on two con-
stants A, B. Let λ1, λ2, . . . be the eigenvalues of Q and let v1, v2, . . . be the
corresponding orthonormal basis of eigenvectors in the euclidean space. Since (5)
is a 2-step vector linear recursion, A and B are vectors, and the general solution
depends on constants Ak, Bk corresponding to each λk, k = 1, 2, . . . .

If ρk, k = 1, 2, . . . , are the corresponding roots (10), then (6) is a solution of
(5) for each of the roots ρ = ρk and ρ = ρ̄k, k = 1, 2, . . . . Therefore the linear
combination

(11) wn = w∗ +
∑
k

(Akρ
n
k +Bkρ̄

n
k ) vk, n = 0, 1, 2, . . .

is the general solution of (5). Inserting n = 0 and n = 1 into (11), then taking the
dot product of the result with vk, we obtain two linear equations for two unknowns
Ak, Bk. Solving for Ak, Bk = Āk, then using (9),

|Ak| = |Bk| ≤
1

2
C |(w0 − w∗) · vk|.
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By orthonormality of the basis,

|wn − w∗|2 =
∑
k

|Akρ
n
k +Bkρ̄

n
k |2

≤
∑
k

(|Ak|+ |Bk|)2sn

≤ C2sn
∑
k

|(w0 − w∗) · vk|2

= C2sn|w0 − w∗|2.
□

Note: Since the proof is dimension-independent, a version of the result should
hold in Hilbert space.
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