A SIMPLE PROOF OF NESTEROV CONVERGENCE

OMAR HIJAB

Let f(w) be a scalar function of a point w in euclidean space. A basic problem is to minimize f(w), that is, to find or compute a minimizer w^* ,

$$f(w) \ge f(w^*),$$
 for every w .

A descent sequence is a sequence w_0, w_1, w_2, \ldots satisfying

$$f(w_0) \ge f(w_1) \ge f(w_2) \ge \dots$$

In a descent sequence, the point after $w = w_n$ is $w^+ = w_{n+1}$, and the point before w is $w^- = w_{n-1}$. Then $(w^-)^+ = w = (w^+)^-$.

We assume f(w) is smooth and strictly convex: There are positive constants m < L with

(1)
$$\frac{m}{2}|x-a|^2 \le f(x) - f(a) - \nabla f(a) \cdot (x-a) \le \frac{L}{2}|x-a|^2.$$

Then there is a unique global minimizer w^* .

Theorem (Nesterov [1, 2, 3]). Let r = m/L, $E(w) = f(w) - f(w^*)$, and

$$t = \frac{1}{L}, \qquad s = \frac{1 - \sqrt{r}}{1 + \sqrt{r}}, \qquad \rho = 1 - \sqrt{r}.$$

Starting from any initial w_0 , the sequence $w_{-1} = w_0, w_1, w_2, \ldots$ given by

(2)
$$w^{\circ} = w + s(w - w^{-}),$$
$$w^{+} = w^{\circ} - t\nabla f(w^{\circ}).$$

converges to w^* at the rate

(3)
$$E(w_n) \le 2\rho^n E(w_0), \qquad n = 1, 2, \dots$$

The proof presented here is a rearrangement of the proof in the book of Wright and Recht [3]. A consequence of the current proof is the natural emergence of the expressions for s and ρ .

Proof. Starting from w_0 , and setting $w_{-1} = w_0$, the loss sequence $f(w_0)$, $f(w_1)$, $f(w_2)$, ... is not always decreasing. Because of this, we seek another function V(w) where the corresponding sequence $V(w_0)$, $V(w_1)$, $V(w_2)$, ... is decreasing.

To explain this, it's best to assume $w^* = 0$ and $f(w^*) = 0$. This can always be arranged by translating the coordinate system. Then it turns out

(4)
$$V(w) = f(w) + \frac{L}{2}|w - \rho w^{-}|^{2},$$

with a suitable choice of ρ , does the job. With the right choices for ρ and s, we will show

(5)
$$V(w^+) \le \rho V(w).$$

Date: January 2024.

We first show how (5) implies the result (3), assuming $\rho = 1 - \sqrt{r}$. Insert $x = w_0$ and $a = w^* = 0$ in (1). Then

$$V(w_0) = f(w_0) + \frac{L}{2}|w_0 - \rho w_0|^2 = f(w_0) + \frac{m}{2}|w_0|^2 \le 2f(w_0).$$

Moreover $f(w) \leq V(w)$. Iterating (5), we obtain

$$f(w_n) \le V(w_n) \le \rho^n V(w_0) \le 2\rho^n f(w_0),$$

which is (3). We now derive (5).

Since t = 1/L is the standard short-step learning rate, the second half of (2), together with (1), implies

(6)
$$f(w^+) \le f(w^\circ) - \frac{t}{2}|g^\circ|^2, \qquad g^\circ = \nabla f(w^\circ).$$

By (1) with x = w and $a = w^{\circ}$,

(7)
$$f(w^{\circ}) \le f(w) - g^{\circ} \cdot (w - w^{\circ}) - \frac{m}{2} |w - w^{\circ}|^{2}.$$

By (1) with $x = w^* = 0$ and $a = w^{\circ}$,

(8)
$$f(w^{\circ}) \le g^{\circ} \cdot w^{\circ} - \frac{m}{2} |w^{\circ}|^{2}.$$

Multiply (7) by ρ and (8) by $1 - \rho$ and add, then insert the sum into (6). After some simplification,

(9)
$$f(w^+) \le \rho f(w) + g^{\circ} \cdot (w^{\circ} - \rho w) - \frac{r}{2t} \left(\rho |w - w^{\circ}|^2 + (1 - \rho) |w^{\circ}|^2 \right) - \frac{t}{2} |g^{\circ}|^2$$

Since $(w^{\circ} - \rho w) - tg^{\circ} = w^{+} - \rho w$,

$$\frac{1}{2t}|w^+ - \rho w|^2 = \frac{1}{2t}|w^\circ - \rho w|^2 - g^\circ \cdot (w^\circ - \rho w) + \frac{t}{2}|g^\circ|^2.$$

Adding this to (9) leads to

$$(10) V(w^+) \le \rho f(w) - \frac{r}{2t} \left(\rho |w - w^{\circ}|^2 + (1 - \rho)|w^{\circ}|^2 \right) + \frac{1}{2t} |w^{\circ} - \rho w|^2.$$

Let

$$R(a,b) = r\left(\rho s^2 |b|^2 + (1-\rho)|a+sb|^2\right) - |(1-\rho)a+sb|^2 + \rho |(1-\rho)a+\rho b|^2.$$

Solving for f(w) in (4) and inserting into (10) leads to

(11)
$$V(w^{+}) \le \rho V(w) - \frac{1}{2t} R(w, w - w^{-}).$$

If we can choose s and ρ so that R(a,b) is a *positive* scalar multiple of $|b|^2$, then, by (11), (5) follows, completing the proof. Based on this, we choose s, ρ to make R(a,b) independent of a. But

$$\nabla_a R = 2(1-\rho) \left((r - (1-\rho)^2) a + (\rho^2 - s(1-r)) b \right)$$

and $\nabla_a R = 0$ is two equations in two unknowns s, ρ . This leads to the choices for s and ρ made above. Once these choices are made, $s(1-r) = \rho^2$ and $\rho > s$. From this,

(12)
$$R(a,b) = R(0,b) = (rs^2 - s^2 + \rho^3)|b|^2 = \rho^2(\rho - s)|b|^2,$$

which is positive.

Note: Since the proof is dimension-independent, a version of this result should hold in Hilbert space.

References

- [1] Sébastien Bubeck, Convex Optimization: Algorithms and Complexity, Now Publishers (2015).
- [2] Yurii Nesterov, Lectures on Convex Optimization, Springer (2018).
- [3] Stephen J. Wright and Benjamin Recht, Optimization for Data Analysis, Cambridge University (2022).

TEMPLE UNIVERSITY

 $Email\ address {\tt : hijab@temple.edu}$