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Let f(w) be a scalar function of a point w in euclidean space. A basic problem
is to minimize f(w), that is, to find or compute a minimizer w∗,

f(w) ≥ f(w∗), for every w.

A descent sequence is a sequence w0, w1, w2, . . . satisfying

f(w0) ≥ f(w1) ≥ f(w2) ≥ . . . .

In a descent sequence, the point after w = wn is w+ = wn+1, and the point before
w is w− = wn−1. Then (w−)+ = w = (w+)−.

We assume f(w) is smooth and strictly convex: There are positive constants
m < L with

(1)
m

2
|x− a|2 ≤ f(x)− f(a)−∇f(a) · (x− a) ≤ L

2
|x− a|2.

Then there is a unique global minimizer w∗.

Theorem (Nesterov [1, 2, 3]). Let r = m/L, E(w) = f(w)− f(w∗), and

t =
1

L
, s =

1−
√
r

1 +
√
r
, ρ = 1−

√
r.

Starting from any initial w0, the sequence w−1 = w0, w1, w2, . . . given by

w◦ = w + s(w − w−),

w+ = w◦ − t∇f(w◦).
(2)

converges to w∗ at the rate

(3) E(wn) ≤ 2ρnE(w0), n = 1, 2, . . . .

The proof presented here is a rearrangement of the proof in the book of Wright
and Recht [3]. A consequence of the current proof is the natural emergence of the
expressions for s and ρ.

Proof. Starting from w0, and setting w−1 = w0, the loss sequence f(w0), f(w1),
f(w2), . . . is not always decreasing. Because of this, we seek another function V (w)
where the corresponding sequence V (w0), V (w1), V (w2), . . . is decreasing.

To explain this, it’s best to assume w∗ = 0 and f(w∗) = 0. This can always be
arranged by translating the coordinate system. Then it turns out

(4) V (w) = f(w) +
L

2
|w − ρw−|2,

with a suitable choice of ρ, does the job. With the right choices for ρ and s, we will
show

(5) V (w+) ≤ ρV (w).
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We first show how (5) implies the result (3), assuming ρ = 1−
√
r. Insert x = w0

and a = w∗ = 0 in (1). Then

V (w0) = f(w0) +
L

2
|w0 − ρw0|2 = f(w0) +

m

2
|w0|2 ≤ 2f(w0).

Moreover f(w) ≤ V (w). Iterating (5), we obtain

f(wn) ≤ V (wn) ≤ ρnV (w0) ≤ 2ρnf(w0),

which is (3). We now derive (5).
Since t = 1/L is the standard short-step learning rate, the second half of (2),

together with (1), implies

(6) f(w+) ≤ f(w◦)− t

2
|g◦|2, g◦ = ∇f(w◦).

By (1) with x = w and a = w◦,

(7) f(w◦) ≤ f(w)− g◦ · (w − w◦)− m

2
|w − w◦|2.

By (1) with x = w∗ = 0 and a = w◦,

(8) f(w◦) ≤ g◦ · w◦ − m

2
|w◦|2.

Multiply (7) by ρ and (8) by 1 − ρ and add, then insert the sum into (6). After
some simplification,

(9) f(w+) ≤ ρf(w) + g◦ · (w◦ − ρw)− r

2t

(
ρ|w − w◦|2 + (1− ρ)|w◦|2

)
− t

2
|g◦|2.

Since (w◦ − ρw)− tg◦ = w+ − ρw,

1

2t
|w+ − ρw|2 =

1

2t
|w◦ − ρw|2 − g◦ · (w◦ − ρw) +

t

2
|g◦|2.

Adding this to (9) leads to

(10) V (w+) ≤ ρf(w)− r

2t

(
ρ|w − w◦|2 + (1− ρ)|w◦|2

)
+

1

2t
|w◦ − ρw|2.

Let

R(a, b) = r
(
ρs2|b|2 + (1− ρ)|a+ sb|2

)
− |(1− ρ)a+ sb|2 + ρ|(1− ρ)a+ ρb|2.

Solving for f(w) in (4) and inserting into (10) leads to

(11) V (w+) ≤ ρV (w)− 1

2t
R(w,w − w−).

If we can choose s and ρ so that R(a, b) is a positive scalar multiple of |b|2, then,
by (11), (5) follows, completing the proof. Based on this, we choose s, ρ to make
R(a, b) independent of a. But

∇aR = 2(1− ρ)

((
r − (1− ρ)2

)
a+

(
ρ2 − s(1− r)

)
b

)
,

and ∇aR = 0 is two equations in two unknowns s, ρ. This leads to the choices for
s and ρ made above. Once these choices are made, s(1− r) = ρ2 and ρ > s. From
this,

(12) R(a, b) = R(0, b) = (rs2 − s2 + ρ3)|b|2 = ρ2(ρ− s)|b|2,
which is positive. □
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Note: Since the proof is dimension-independent, a version of this result should
hold in Hilbert space.
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