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Note: The audio in this pdf won’t play without additional
files.
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Low Dimensional Balls

B3 =
{
(x, y, z) : x2 + y2 + z2 ≤ 1

}
S2 =

{
(x, y, z) : x2 + y2 + z2 = 1

}

y

z

x

The volume of B3 is 4π/3 = 4.19 and the area of S2 is 4π.
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Low Dimensional Balls, Continued

B2 =
{
(x, y) : x2 + y2 ≤ 1

}
S1 =

{
(x, y) : x2 + y2 = 1

}

0 1

i

The area of B2 is π = 3.14 and the length of S1 is 2π.
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Low Dimensional Balls, Continued

B1 =
{

x : x2 ≤ 1
}

S0 =
{

x : x2 = 1
}

−1 0 1

The length of B1 = [−1, 1] is 2 and the measure of S0 is 2.

Omar Hijab University of New Haven The Volume of the Ball in n Dimensions



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Low Dimensional Balls, Continued

B1 =
{

x : x2 ≤ 1
}

S0 =
{

x : x2 = 1
}

−1 0 1

The length of B1 = [−1, 1] is 2 and the measure of S0 is 2.

Omar Hijab University of New Haven The Volume of the Ball in n Dimensions



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Low Dimensional Balls, Continued

B0 = {0}

The measure of B0 is 1.
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Low Dimensional Balls, Continued

B0 = {0}
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The General Formula

In n dimensions, the ball and the sphere are

Bn = {(x1, x2, . . . , xn) : x2
1 + x2

2 + · · ·+ x2
n ≤ 1}

Sn−1 = {(x1, x2, . . . , xn) : x2
1 + x2

2 + · · ·+ x2
n = 1}.

Throughout |G| denotes the size, measure, volume, area, length,
etc. of the geometric object G. Which it actually is will be clear
from the context. We will show

|Bn| = πn/2

(n/2)!
|Bn| = 1

n |S
n−1|.
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History

|Bn| = 1
n |Sn−1| = radius

dimension |Sn−1|

is Archimedes’ formula.

The idea behind this
formula is suspension. The general formula

|Bn| = πn/2

(n/2)!

goes back to the beginning of calculus. At this
point, Isaac would say . . . and Carl • would
improve this by saying . . . then Archimedes •
would respond . . .
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History, Continued

Archimedes lived in the city of Syracuse in Sicily. More than a century after the death
of Archimedes, Cicero, the roman senator/lawyer/orator/etc, was governor of Sicily. In
his memoirs, Cicero wrote

• When I was questor in Sicily [in 75 BC, 137 years after the death of Archimedes] I
managed to track down his grave. The Syracusians knew nothing about it, and indeed
denied that any such thing existed. But there it was, completely surrounded and
hidden by bushes of brambles and thorns.
• I remembered having heard of some simple lines of verse which had been inscribed
on his tomb, referring to a sphere and cylinder modelled in stone on top of the grave.
And so I took a good look round all the numerous tombs that stand beside the
Agrigentine Gate. Finally I noted a little column just visible above the scrub: it was
surmounted by a sphere and a cylinder.
• I immediately said to the Syracusans, some of whose leading citizens were with me
at the time, that I believed this was the very object I had been looking for. Men were
sent in with sickles to clear the site, and when a path to the monument had been
opened we walked right up to it. And the verses were still visible, though
approximately the second half of each line had been worn away.
• So one of the most famous cities in the Greek world, and in former days a great
centre of learning as well, would have remained in total ignorance of the tomb of the
most brilliant citizen it had ever produced, had a man from Arpinum not come and
pointed it out!
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Factorials and π |Bn| = πn/2

(n/2)!

▶ What does x! mean?

As Ada puts it . . .
▶ The factorial x! is a function satisfying x! = x · (x − 1)!.
▶ By the general formula for n = 0, 0! = 1 (hence

1! = 1 · 0! = 1).
▶ What does π mean? By the general formula for n = 2, π is

the area of the disk D = B2.
▶ What does (1/2)! mean? By the general formula for n = 1,

(1/2)! = √
π/2 (hence (−1/2)! = √

π).
▶ Thus we are defining 0!, π, and (1/2)! by the general formula

for n = 0, n = 2, and n = 1.
▶ Of course, Leonhard • would say . . .
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▶ The factorial x! is a function satisfying x! = x · (x − 1)!.
▶ By the general formula for n = 0, 0! = 1 (hence

1! = 1 · 0! = 1).
▶ What does π mean? By the general formula for n = 2, π is

the area of the disk D = B2.
▶ What does (1/2)! mean? By the general formula for n = 1,

(1/2)! = √
π/2 (hence (−1/2)! = √

π).
▶ Thus we are defining 0!, π, and (1/2)! by the general formula

for n = 0, n = 2, and n = 1.
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Omar Hijab University of New Haven The Volume of the Ball in n Dimensions



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Factorials and π, Continued |Bn| = πn/2

(n/2)!

With these definitions, we have

1! = 1, 2! = 2, 3! = 6, . . . ,
(3/2)! = 3

√
π/4, (5/2)! = 15

√
π/8, (7/2)! = 105

√
π/16, . . . ,

and the general formula is meaningful for all n ≥ 0.

The general
formula then implies |B3| = 4π/3,

|B4| = π2/2 = 4.93, |B5| = 8π2/15 = 5.26, |B6| = π3/6 = 5.16.
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Plan of Attack |Bn| = πn/2

(n/2)!

▶ Show the general formula for 2n + 1 is a consequence of the
general formula for 2n.

▶ Derive the general formula for 2n.
The first part follows from slicing against the last coordinate x in
R2n+1

|B2n+1|
|B2n|

=

∫ 1

−1
(1 − x2)n dx =

√
π

n!
(n + 1/2)! .

So now we have to derive the general formula for 2n with n ≥ 2.
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Even Dimensional Balls
Look at the even case

|B2n| = πn

n!

Every formula goes with a picture. Every picture goes with a
formula. What’s the picture here?
To get the correct picture, we need to look at the ball as a
geometrical object in complex space, not real space. As Maryam
• says . . . For z = x + iy, introduce polar coordinates,
|z|2 = r2 = x2 + y2, x = r cos θ, y = r sin θ, z = reiθ

0 x

ziy

θ

r

r is the radius and θ is the angle.
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Complex Coordinates
To derive the even case,

|B2n| = πn

n! ,

we identify R2n with Cn via
(x1, y1, . . . , xn, yn) ↔ (x1 + iy1, . . . , xn + iyn) = (z1, . . . , zn).

It’s difficult to graph objects in Cn for n > 1.
But the map

(z1, . . . , zn) 7→ (r1, . . . , rn)

projects Cn into Rn, allowing us a partial
visualization, called radial space. The inverse
image of a point in radial space is an n-torus.

r1

r2 |C2|
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The Polydisk

In Cn,

B2n =
{
(z1, . . . , zn) : |z1|2 + · · ·+ |zn|2 ≤ 1

}
.

Let D = B2 = {z : |z|2 ≤ 1} be the disk in C.

Let P = Dn be the polydisk in Cn, the n-th power of D,

P = {(z1, . . . , zn) ∈ Cn : |z1|2 ≤ 1, . . . , |zn|2 ≤ 1} = D × · · · × D.

For n = 1, B2n = P = D. For all n > 1, B2n

and P are topologically equivalent. For all
n > 1, B2n and P are smoothly equivalent.
But as Henri • points out . . . Then Olga •
responds . . .

r2

r1

|B4||P|
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For n = 1, B2n = P = D. For all n > 1, B2n

and P are topologically equivalent. For all
n > 1, B2n and P are smoothly equivalent.

But as Henri • points out . . . Then Olga •
responds . . .

r2

r1

|B4||P|

Omar Hijab University of New Haven The Volume of the Ball in n Dimensions
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Multiplicativity of Volume

Let A1 and A2 be regions in euclidean space and let A1 × A2 be
their cartesian product.

Then the volume of the product equals the
product of the volumes,

|A1 × A2| = |A1| · |A2|,

so we have |P| = |Dn| = |D × · · · × D| = πn.
But then Sofya • would say . . .

Omar Hijab University of New Haven The Volume of the Ball in n Dimensions
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Permutations P = D × · · · × D

Let G be the group of permutations g on n
letters. Then |G| = n!, and there is an action
of G on P: Each g in G permutes the
coordinates,

(z1, . . . , zn) → (zg1, . . . , zgn).

This is an equivalence relation on P. Let P/G be the
collection of equivalence classes, the orbit space under
G, the collection of unordered n-tuples < z1, . . . , zn >,
with each coordinate in D, the configuration space of n
points z1, . . . , zn in D, the configuration space of n
bosons z1, . . . , zn in D.
P/G = D ∨ · · · ∨ D is the symmetric n-th power of D.
At this point, Emmy • interjects . . .

D

S1 ∨ S1

Omar Hijab University of New Haven The Volume of the Ball in n Dimensions
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Permutations, Continued |B2n| = πn

n!

In fact, P/G is in one-to-one correspondence with

P1 = {(z1, . . . , zn) ∈ P : 0 ≤ |z1|2 ≤ |z2|2 ≤ · · · ≤ |zn|2 ≤ 1},

and P1 is a fundamental domain for the action of G on P.

r2

r1

|P|

r2
1 ≤ 1, r2

2 ≤ 1
r2

r1

|P1|

r2
1 ≤ r2

2 ≤ 1

In other words, G tessellates P into cells Pg = g(P1), g ∈ G.
Since the action of G on P is volume-preserving, these n! cells have
equal volume, hence |P/G| = |P1| = πn/n!. Evariste • would say
. . . Thus it remains to find a volume-preserving bijection between
P1 and B2n. But, before we do that, Pythagoras • complains . . .
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Permutations, Continued |B2n| = πn

n!

In fact, P/G is in one-to-one correspondence with

P1 = {(z1, . . . , zn) ∈ P : 0 ≤ |z1|2 ≤ |z2|2 ≤ · · · ≤ |zn|2 ≤ 1},

and P1 is a fundamental domain for the action of G on P.

r2

r1

|P|

r2
1 ≤ 1, r2

2 ≤ 1
r2

r1

|P1|

r2
1 ≤ r2

2 ≤ 1

In other words, G tessellates P into cells Pg = g(P1), g ∈ G.
Since the action of G on P is volume-preserving, these n! cells have
equal volume, hence |P/G| = |P1| = πn/n!. Evariste • would say
. . .

Thus it remains to find a volume-preserving bijection between
P1 and B2n. But, before we do that, Pythagoras • complains . . .
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The Pythagorean Tessellation
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Volume Preserving Maps
Let z′ = (z′1, . . . , z′n) denote a point in B2n, and z = (z1, . . . , zn) a
point in P1. We seek a bijective volume-preserving map between z
in P1 and z′ in B2n.

Let r1, . . . , rn and θ1, . . . , θn be the radii and angles of z1, . . . , zn.
The map z ↔ z′ we seek is defined by

θ1 = θ′1, θ2 = θ′2, . . . , θn = θ′n

and

r1
2 = r′1

2

r2
2 = r′1

2
+ r′2

2

. . .

rn
2 = r′1

2
+ r′2

2
+ r′3

2
+ · · ·+ r′n

2
.

This map is certainly a bijection between z in P1 and z′ in B2n.
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Volume Preserving Maps, Continued

r2

r1

|P|

r2
1 ≤ 1, r2

2 ≤ 1

c

ba

r2

r1

|P1|

r2
1 ≤ r2

2 ≤ 1

c′ b′

a′

r′2

r′1

|B4|

r′1
2 + r′2

2 ≤ 1

Now a map z 7→ z′ in C is area-preserving if the area elements agree

dxdy = r drdθ = r′ dr′dθ′ = dx′dy′.

In particular, if dθ′ = dθ and r′dr′ = rdr, the map is area
preserving. Similarly, a map z 7→ z′ in Cn is volume-preserving if

dθ′1dθ′2 . . . dθ′n = dθ1dθ2 . . . dθn,

r′1 dr′1 r′2 dr′2 . . . r′n dr′n = r1 dr1 r2 dr2 . . . rn drn.
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Volume Preserving Maps, Continued
But our map preserves coordinate angles and satisfies

r1
2 = r′1

2

r2
2 = r′1

2
+ r′2

2

r3
2 = r′1

2
+ r′2

2
+ r′3

2
,

. . .

rn
2 = r′1

2
+ r′2

2
+ r′3

2
+ · · ·+ r′n

2
.

Differentiating yields
r1dr1 = r′1dr′1
r2dr2 = r′1dr′1 + r′2dr′2
r3dr3 = r′1dr′1 + r′2dr′2 + r′3dr′3,

. . .

rndrn = r′1dr′1 + r′2dr′2 + r′3dr′3 + · · ·+ r′ndr′n.
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Volume Preserving Maps, Continued

Since this is a sequence of (infinitesimal) shears,

r′1 dr′1 r′2 dr′2 . . . r′n dr′n = r1 dr1 r2 dr2 . . . rn drn,

and we’re done. Setting t1 = r2
1/2, . . . , tn = r2

n/2, all of the
above is the same as saying

B2n = × (n = 3)

|B2n| = πn

n!
Volume Multiplicativity Polydisk Permutations

Ball

2
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Volume Preserving Maps, Continued
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Odd Dimensional Spheres

The sphere S2n+1 consists of all points
(z1, . . . , zn, zn+1) = (z, zn+1) in Cn+1 satisfying

r2 = r2
1 + · · ·+ r2

n + r2
n+1 = 1.

Using r1dr1 + . . . rndrn + rn+1drn+1 = 0, the map

(z, θ) →
(

z, θ,
√

1 − (r2
1 + · · ·+ r2n)

)
is a volume-preserving bijection

B2n × S1 → S2n+1.

Hence |S2n+1| = |S1| |B2n|.
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Complex Projective Space

z
θ

0

eiθz

Rephrasing the previous slide, the circle action on S2n+1

(z1, . . . , zn, zn+1) → (z1, . . . , zn, eiθzn+1)

has orbit space B2n.

Now the circle action on S2n+1

(z1, . . . , zn, zn+1) → (eiθz1, . . . , eiθzn, eiθzn+1)

has orbit space CPn, so we have projections

S2n+1

B2n CPn

S1S1

|B2n| = πn

n! = |CPn| Volume Multiplicativity Polydisk Permutations

Ball

2
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Complex Projective Space
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